2.已知4x2-ax+1可變成(2x-b)2的形式,則ab=4.

分析 展開4x2-ax+1=(2x-b)2=4x2-4bx+b2,可得$\left\{\begin{array}{l}{-a=-4b}\\{1=^{2}}\end{array}\right.$,解出即可.

解答 解:∵4x2-ax+1=(2x-b)2=4x2-4bx+b2
∴$\left\{\begin{array}{l}{-a=-4b}\\{1=^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=1}\\{a=4}\end{array}\right.$,$\left\{\begin{array}{l}{b=-1}\\{a=-4}\end{array}\right.$.
∴ab=4.
故答案為:4.

點(diǎn)評(píng) 本題考查了配方法、乘法公式、恒等式性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=mx2+x-1的圖象與x軸的交點(diǎn)至少有一個(gè)在原點(diǎn)的右側(cè),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在-6和24之間插人4個(gè)數(shù),使這6個(gè)數(shù)成等差數(shù)列,求插人的4個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.228與2010的最大公約數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知一個(gè)直角三角形的周長為$\sqrt{2}+1$,則它的面積的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.滿足方程pqqp=(2p+q+1)(2q+p+1)的素?cái)?shù)對(duì)(p,q)有2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=x2+lnx-ax在(0,1)上是增函數(shù),則實(shí)數(shù)a的取值范圍是(-∞,$2\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax在[$\frac{2}{3}$,+∞)上存在單調(diào)遞增區(qū)間,則a的取值范圍是$(-\frac{1}{9},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-\frac{2}{{e}^{x}+1},x≥0}\\{\frac{2}{{e}^{x}+1}-\frac{3}{2},x<0}\end{array}\right.$.
(1)求函數(shù)f(x)的零點(diǎn);
(2)若實(shí)數(shù)t滿足f(log2t)+f(log2$\frac{1}{t}$)<2f(2),求f(t)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案