5.設(shè)常數(shù)a∈R,函數(shù)f(x)=|x-1|+|x2-a|,若f(2)=1,則a=4.

分析 根據(jù)已知中函數(shù)f(x)=|x-1|+|x2-a|,將x=2代入構(gòu)造方程,解得答案.

解答 解:∵函數(shù)f(x)=|x-1|+|x2-a|,
∴f(2)=|2-1|+|4-a|=1+|4-a|=1,
∴|4-a|=0,
解得:a=4,
故答案為:4.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是絕對(duì)值的定義,分段函數(shù)的應(yīng)用,函數(shù)求值,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.根據(jù)下列條件,求直線的方程:
(1)過(guò)兩直線3x-2y+1=0和x+3y+4=0的交點(diǎn),且垂直于直線x+3y+4=0.
(2)當(dāng)a為何值時(shí),直線l1:y=-x+2a與直線l2:y=(a2-2)x+2平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,矩形O′A′B′C′是水平放置的一個(gè)平面圖形的斜二測(cè)畫(huà)法畫(huà)出的直觀圖,其中O′A′=6cm,C′D′=2cm,則原圖形是(  )
A.正方形B.矩形C.梯形D.菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若$α∈(0,\frac{π}{2})$,且${sin^2}α+cos2α=\frac{1}{4}$,則tanα的值等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}為等差數(shù)列,公差d=2且a2,a4,a5成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)若Sn為{an}的前n項(xiàng)和,求當(dāng)n為多少時(shí)Sn有最小值,并求Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2x3+3x2+a,其中a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的圖象與直線y=12x相切,求a的值;
(3)是否存在相異的正實(shí)數(shù)m,n,使得f(m)=12m,f(n)=12n?若存在,試確定實(shí)數(shù)a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)和短軸端點(diǎn)都在圓x2+y2=4上.
(1)求橢圓C的方程;
(2)已知點(diǎn)P(-3,2),若斜率為1的直線l與橢圓C相交于A,B兩點(diǎn),且△ABP是以AB為底邊的等腰三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若正數(shù)x,y滿足2x+y-3=0,則$\frac{2}{x}$+$\frac{1}{y}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某校從參加高二年級(jí)數(shù)學(xué)競(jìng)賽考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)分成六段,然后畫(huà)出如圖所示部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:
(1)求第四個(gè)小組的頻率以及頻率分布直方圖中第四個(gè)小矩形的高;
(2)估計(jì)這次考試的及格率(60分及60分以上為及格)和平均分.

查看答案和解析>>

同步練習(xí)冊(cè)答案