分析 已知等式利用同角三角函數(shù)基本關系變形,表示出cosx即可.
解答 解:∵x,y∈(0,$\frac{π}{2}$),且有2sinx=$\sqrt{6}$siny,即sinx=$\frac{\sqrt{6}}{2}$siny,tanx=$\frac{sinx}{cosx}$=$\sqrt{3}$tany,
∴cosx=$\frac{sinx}{\sqrt{3}tany}$=$\frac{\frac{\sqrt{6}}{2}siny}{\sqrt{3}•\frac{siny}{cosy}}$=$\frac{\sqrt{2}}{2}$cosy,
∵sin2y+cos2y=1,
∴$\frac{2}{3}$sin2x+2cos2x=1,
∵sin2x+cos2x=1,
∴cos2x=$\frac{1}{4}$,
則cosx=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$
點評 此題考查了同角三角函數(shù)基本關系的運用,熟練掌握基本關系是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{{{(n+1)}^2}}}{4}$ | B. | $\frac{n(n+3)}{4}$ | C. | $\frac{n(n+1)}{2}$ | D. | $\frac{{{n^2}+1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,2] | B. | [0,2] | C. | [0,+∞) | D. | [-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | $\sqrt{10}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|0≤x≤2} | B. | {x|0<x<2} | C. | {x|-1≤x<0} | D. | {x|-1<x≤0} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 偶函數(shù) | B. | 奇函數(shù) | ||
C. | 既是偶函數(shù),也是奇函數(shù) | D. | 既非偶函數(shù),也非奇函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com