分析 (1)非常數(shù)數(shù)列{an}滿足a1=1,an+12-3an+1an+2an2=0(n∈N*),通過(guò)因式分解可得:an+1=2an,再利用等比數(shù)列的通項(xiàng)公式即可得出.
(2)利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(1)∵非常數(shù)數(shù)列{an}滿足a1=1,an+12-3an+1an+2an2=0(n∈N*),
∴(an+1-an)(an+1-2an)=0,
∴an+1=2an,an+1=an=1舍去.
∴數(shù)列{an}是等比數(shù)列,公比為2,
∴an=2n-1.
∵數(shù)列{bn}滿足$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+$\frac{1}{_{3}}$+…+$\frac{1}{_{n}}$=n2(n∈N*),
∴n=1時(shí),$\frac{1}{_{1}}$=1,解得b1=1.
當(dāng)n≥2時(shí),$\frac{1}{_{n}}$=n2-(n-1)2=2n-1.
∴bn=$\frac{1}{2n-1}$(n=1時(shí)也成立).
∴bn=$\frac{1}{2n-1}$.
(2)cn=$\frac{{a}_{n}}{_{n}}$=(2n-1)×2n-1,
∴數(shù)列{cn}的前n項(xiàng)和Tn=1+3×2+5×22+…+(2n-1)×2n-1,
2Tn=2+3×22+…+(2n-3)×2n-1+(2n-1)×2n,
∴-Tn=1+2(2+22+…+2n-1)-(2n-1)×2n=1+2×$\frac{2({2}^{n-1}-1)}{2-1}$-(2n-1)×2n=(3-2n)×2n-3,
∴Tn=(2n-3)×2n+3.
點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com