分析 由題意,BC,QR的斜率均存在,設(shè)BC:y=k(x+$\frac{p}{2}$),x=$\frac{y}{k}$-$\frac{p}{2}$,再利用韋達(dá)定理,可得bc=$\frac{{p}^{2}}{k}$,即可證明結(jié)論.
解答 證明:由題意,BC,QR的斜率均存在,設(shè)為k,則令B(b′,b),C(c′,c),Q(q′,q),R(r′,r),A(-$\frac{p}{2}$,0),F(xiàn)($\frac{p}{2}$,0),
BC:y=k(x+$\frac{p}{2}$),x=$\frac{y}{k}$-$\frac{p}{2}$,
∴y2=2p($\frac{y}{k}$-$\frac{p}{2}$),
∴ky2-2py+p2=0,
∴bc=$\frac{{p}^{2}}{k}$,
∴|AB|2|AC|2=[(b′+$\frac{p}{2}$)2+(b-0)2][(c′+$\frac{p}{2}$)2+(c-0)2]
=[($\frac{k}$)2+b2][($\frac{c}{k}$)2+c2]=$(1+\frac{1}{{k}^{2}})$2(bc)2=$\frac{({k}^{2}+1)^{2}{p}^{2}}{{k}^{6}}$,
同理,|FQ|2|FR|2=$\frac{({k}^{2}+1)^{2}{p}^{2}}{{k}^{6}}$,
∴|AB|•|AC|=|FQ|•|FR|.
點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com