10.設(shè)拋物線y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足,如果AF的傾斜角為$\frac{2π}{3}$,則|PF|=8.

分析 通過設(shè)P(m,n)(不妨令m、n均為正數(shù)),利用△APF為等腰三角形及直角三角形,求出n,m,通過拋物線的定義求解即可.

解答 解:由題可知:拋物線y2=8x的焦點(diǎn)為:F(2,0),
拋物線y2=8x的準(zhǔn)線方程為:x=-2,
不妨設(shè)P(m,n)(m、n均為正數(shù)),則8m=n2,
∴|PA|=2+m,|FA|=$\sqrt{{4}^{2}+{n}^{2}}$,
由拋物線的定義可知:|PF|=|PA|=2+m,
∴△APF為等腰三角形,
又∠AFx=$\frac{2π}{3}$,∴2p=|FA|cos60°,|FA|=8.
即$\sqrt{{4}^{2}+{n}^{2}}$=8,n2=48.
得:8m=48,
解得:m=6,|PF|=2+6=8
故答案為:8.

點(diǎn)評 本題以拋物線為載體,考查求線段長度,考查拋物線的簡單性質(zhì)的應(yīng)用,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆安徽六安一中高三上學(xué)期月考二數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知復(fù)數(shù)的共軛復(fù)數(shù)有,且滿足,其中是虛數(shù)單位,則復(fù)數(shù)的虛部為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若兩個(gè)相似三角形的周長比為3:4,則它們的三角形面積比是9:16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)的零點(diǎn)為x1,函數(shù)g(x)=4x+2x-2的零點(diǎn)為x2,若|x1-x2|<$\frac{1}{4}$,則f(x)可以是( 。
A.f(x)=2x+$\frac{1}{2}$B.f(x)=-x2+x-$\frac{1}{4}$C.f(x)=1-10xD.f(x)=ln(8x-7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=|x-1|+|x-2|,記f(x)的最小值為k.
(1)解不等式f(x)≤x+1;
(2)是否存在正數(shù)a、b,同時(shí)滿足:2a+b=k,$\frac{1}{a}$+$\frac{2}$=4?并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知集合A=[-2,4],B=(a,+∞).
①若A∩B=A,則實(shí)數(shù)a的取值范圍是a<-2;
②若A∩B≠∅,則實(shí)數(shù)a的取值范圍是a<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點(diǎn)R是圓心為Q的圓(x+$\sqrt{3}$)2+y2=16上的一個(gè)動(dòng)點(diǎn),N($\sqrt{3}$,0)為定點(diǎn),線段RN的中垂線與直線QR交于點(diǎn)T,設(shè)T點(diǎn)的軌跡為曲線C.
(1)求曲線C的方程;
(2)過圓x2+y2=1上的動(dòng)點(diǎn)P作圓x2+y2=1的切線l,與曲線C交于不同兩點(diǎn)A,B,用幾何畫板軟件可畫出線段AB的中點(diǎn)M的軌跡是如圖所示的漂亮的曲線,求該曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|x+1|+|x-m|(m>0).
(1)若f(x)≥5恒成立,求m的取值范圍;
(2)在(1)的條件下,記m的最小值是m0,若$\frac{1}{{a}^{2}}$+$\frac{4}{^{2}}$+$\frac{9}{{c}^{2}}$=m0,則當(dāng)a,b,c取何值時(shí),a2+4b2+9c2取得最小值,并求出該最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐V-ABCD中,底面ABCD是邊長為2的正方形,其他四個(gè)側(cè)面都是側(cè)棱長為$\sqrt{5}$的等腰三角形,M為VC邊中點(diǎn).
(1)求證:VA∥平面BDM;
(2)試畫出二面角V-AB-C的平面角,并求它的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案