分析 (1)依題意,⊙Pn的半徑${r_n}={y_n}={x_n}^2$,由于⊙Pn與⊙Pn+1彼此外切,可得|PnPn+1|=rn+rn+1,$\sqrt{{{({x_n}-{x_{n+1}})}^2}+{{({y_n}-{y_{n+1}})}^2}}={y_n}+{y_{n+1}}$.化簡整理利用等差數(shù)列的通項公式即可得出.
(2)由(1)可得${x}_{n}=\frac{1}{2n-1}$,可得Sn,再利用“裂項求和”即可得出.
解答 (1)證明:依題意,⊙Pn的半徑${r_n}={y_n}={x_n}^2$,
∵⊙Pn與⊙Pn+1彼此外切,
∴|PnPn+1|=rn+rn+1,∴$\sqrt{{{({x_n}-{x_{n+1}})}^2}+{{({y_n}-{y_{n+1}})}^2}}={y_n}+{y_{n+1}}$.
兩邊平方,化簡得${({x_n}-{x_{n+1}})^2}=4{y_n}{y_{n+1}}$,即${({x_n}-{x_{n+1}})^2}=4x_n^2x_{n+1}^2$.
∵xn>xn+1>0,∴xn-xn+1=2xnxn+1,$⇒\frac{1}{{{x_{n+1}}}}-\frac{1}{x_n}=2(n∈{N_+})$.
∴數(shù)列$\left\{{\frac{1}{x_n}}\right\}$是等差數(shù)列.
(2)解:由題設(shè),x1=1,∴$\frac{1}{x_n}=\frac{1}{x_1}+(n-1)•2⇒{x_n}=\frac{1}{2n-1}$.
${S_n}=π{r_n}^2=π{y_n}^2=π{x_n}^4=\frac{π}{{{{(2n-1)}^4}}}$.
${T_n}=\sqrt{S_1}+\sqrt{S_2}+…+\sqrt{S_n}$
=$\sqrt{π}[{1+\frac{1}{3^2}+\frac{1}{5^2}+…+\frac{1}{{{{(2n-1)}^2}}}}]$≤$\sqrt{π}[{1+\frac{1}{1•3}+\frac{1}{3•5}+…+\frac{1}{(2n-3)•(2n-1)}}]$
=$\sqrt{π}\left\{{1+\frac{1}{2}[{(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-3}-\frac{1}{2n-1})}]}\right\}$
=$\sqrt{π}[{1+\frac{1}{2}(1-\frac{1}{2n-1})}]$
=$\frac{{3\sqrt{π}}}{2}-\frac{{\sqrt{π}}}{2(2n-1)}<\frac{{3\sqrt{π}}}{2}$.
點評 本題考查了等差數(shù)列的通項公式、“裂項求和”方法、圓的性質(zhì)及其面積計算公式,考查了變形能力、推理能力與計算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | 3 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com