A. | y=$\frac{1}{2}x$ | B. | y=$\frac{\sqrt{2}}{2}$x | C. | y=$\frac{\sqrt{3}}{2}$x | D. | y=x |
分析 設(shè)F2(c,0),令x=c,代入橢圓方程求得y=±$\frac{^{2}}{a}$,運(yùn)用向量的數(shù)量積的定義可得AF2⊥F1F2,可得A(c,$\frac{^{2}}{a}$),運(yùn)用離心率公式和直線的斜率公式,計(jì)算即可得到所求直線方程.
解答 解:設(shè)F2(c,0),
令x=c,代入橢圓方程可得y=±b$\sqrt{1-\frac{{c}^{2}}{{a}^{2}}}$=±$\frac{^{2}}{a}$,
由$\overrightarrow{OA}$•$\overrightarrow{O{F}_{2}}$=|$\overrightarrow{O{F}_{2}}$|2,
即為|$\overrightarrow{OA}$|•|$\overrightarrow{O{F}_{2}}$|•cos∠AOF2=|$\overrightarrow{O{F}_{2}}$|2,
則|$\overrightarrow{OA}$|•cos∠AOF2=|$\overrightarrow{O{F}_{2}}$|,
即有AF2⊥F1F2,可得A(c,$\frac{^{2}}{a}$),
又e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
可得$\frac{^{2}}{ac}$=$\frac{{a}^{2}-{c}^{2}}{ac}$=$\frac{1-{e}^{2}}{e}$=$\frac{1-\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=$\frac{\sqrt{2}}{2}$,
則直線OA的方程為y=$\frac{^{2}}{ac}$x,即為y=$\frac{\sqrt{2}}{2}$x.
故選:B.
點(diǎn)評(píng) 本題考查直線方程的求法,注意運(yùn)用向量的數(shù)量積的定義和橢圓的離心率公式,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題p∨q是假命題 | B. | 命題p∧q是真命題 | ||
C. | 命題p∧(¬q)是真命題 | D. | 命題p∨(¬q)是假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | -3 | C. | 2 | D. | -2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com