A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由(1+2i)z=1-2i,得$z=\frac{1-2i}{1+2i}$,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求出復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)點的坐標(biāo),則答案可求.
解答 解:由(1+2i)z=1-2i,
得$z=\frac{1-2i}{1+2i}$=$\frac{(1-2i)^{2}}{(1+2i)(1-2i)}=\frac{-3-4i}{5}=-\frac{3}{5}-\frac{4}{5}i$,
則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)點的坐標(biāo)為:($-\frac{3}{5}$,$-\frac{4}{5}$),位于第三象限.
故選:C.
點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0) | B. | (1,1) | C. | (cos37°,sin37°) | D. | $\frac{\overline a}{{|{\overline a}|}}(|{\overline a}|≠0)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$-\frac{{\sqrt{5}}}{e^x}$ | B. | y=$\sqrt{x+1}$ | C. | y=lnx | D. | y=x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com