9.若sin(α+β)=$\frac{4}{5}$,sin(α-β)=-$\frac{12}{13}$,
(1)求$\frac{tanα}{tanβ}$的值;
(2)若$\frac{π}{2}$<α+β<π,-$\frac{π}{2}$<α-β<$\frac{π}{2}$,求cos2α,sin2α.

分析 (1)利用兩角差的正弦、余弦公式把條件展開,解方程求得$\frac{tanα}{tanβ}$的值.
(2)利用同角三角函數(shù)的基本關系求得cos(α+β)和cos(α-β)的值,再利用兩角差的正弦、余弦公式求得cos2α,sin2α的值.

解答 解:(1)∵sin(α+β)=sinαcosβ+cosαsinβ=$\frac{4}{5}$,sin(α-β)=sinαcosβ-cosαsinβ=-$\frac{12}{13}$,
∴sinαcosβ=-$\frac{4}{65}$,cosαsinβ=$\frac{56}{65}$,∴$\frac{tanα}{tanβ}$=$\frac{sinαcosβ}{cosαsinβ}$=-$\frac{1}{14}$.
(2)若$\frac{π}{2}$<α+β<π,-$\frac{π}{2}$<α-β<$\frac{π}{2}$,則cos(α+β)=-$\sqrt{{1-sin(α+β)}^{2}}$=-$\frac{3}{5}$,cos(α-β)=$\sqrt{{1-sin}^{2}(α-β)}$=$\frac{5}{13}$,
∴cos2α=cos[(α+β)+(α-β)]=cos(α+β)cos(α-β)-sin(α+β)sin(α-β)=-$\frac{3}{5}$•$\frac{5}{13}$-$\frac{4}{5}$•(-$\frac{12}{13}$)=$\frac{33}{65}$,
sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=$\frac{4}{5}•\frac{5}{13}$+(-$\frac{3}{5}$)•(-$\frac{12}{13}$)=$\frac{56}{65}$.

點評 本題主要考查同角三角函數(shù)的基本關系,兩角差的正弦、余弦公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.試判斷函數(shù)y=$\sqrt{1-x}$在其定義域上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{\sqrt{x}}$的定義域為集合A,集合B=x{x|ax-1<0,a∈N*},集合C={{x|log2x<-1}.
(1)求A∩B;
(2)若C⊆(A∩B),求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.拋物線x=8ay2的焦點F的坐標是$(\frac{1}{32a},0)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在△ABC中,B=$\frac{π}{3}$,BC=2,點D、E分別在邊AB、AC上,AD=DC,DE⊥AC,且DE≥$\frac{{\sqrt{6}}}{2}$,則∠ACB的最大值為75°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知△ABC,點E是三角形內(nèi)一點,BE延長后交AC于點D,設∠DBC=30°,∠DCE=10°,∠ECB=20°,∠DBA=40°.
(1)若AB=$\frac{2}{sin40°}$,求AD的長;
(2)求證:∠BAE=60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖所示,在正方形OABC中任取一點,則該點落在陰影部分的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.過球的一條半徑的中點,作垂直于該半徑的平面,則所得截面的面積是球的表面積的( 。
A.$\frac{3}{16}$B.$\frac{9}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設復數(shù)z滿足(1+2i)z=1-2i,則z位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案