19.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,下列命題正確的是( 。
A.若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow$=$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$B.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$
C.若λ$\overrightarrow{a}$=0(λ為實(shí)數(shù)),則λ=0D.若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$

分析 根據(jù)向量相等的概念,向量的概念,向量數(shù)乘的幾何意義,以及向量平行的概念便可判斷每個(gè)選項(xiàng)的正誤,從而找出正確選項(xiàng).

解答 解:根據(jù)向量相等的定義,顯然$\overrightarrow{a}=\overrightarrow,\overrightarrow=\overrightarrow{c}$時(shí),得出$\overrightarrow{a}=\overrightarrow{c}$,∴A正確;
向量包括大小和方向,∴$|\overrightarrow{a}|=|\overrightarrow|$得不出$\overrightarrow{a}=\overrightarrow$,∴B錯(cuò)誤;
$λ\overrightarrow{a}=\overrightarrow{0}$時(shí),λ=0,或$\overrightarrow{a}=\overrightarrow{0}$,∴C錯(cuò)誤;
若$\overrightarrow=\overrightarrow{0}$,$\overrightarrow{a}$與$\overrightarrow{c}$不平行,滿足$\overrightarrow{a}∥\overrightarrow,\overrightarrow∥\overrightarrow{c}$,而得不出$\overrightarrow{a}∥\overrightarrow{c}$,∴D錯(cuò)誤.
故選:A.

點(diǎn)評(píng) 考查向量的概念,向量相等的定義,以及向量數(shù)乘的幾何意義,向量平行的概念,零向量的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知橢圓$\frac{x^2}{100}$+$\frac{y^2}{64}$=1的左焦點(diǎn)為F,一動(dòng)直線與橢圓交于點(diǎn)M、N,則△FMN的周長(zhǎng)的最大值為( 。
A.16B.20C.32D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.為了解某校學(xué)生暑期參加體育鍛煉的情況,對(duì)某班M名學(xué)生暑期參加體育鍛煉的次數(shù)進(jìn)行了統(tǒng)計(jì),得到如表的頻率分布表與如圖直方圖:
組別鍛煉次數(shù)頻數(shù)(人)頻率
1[2,6)20.04
2[6,10)110.22
3[10,14)16c
4[14,18)150.30
5[18,22)de
6[22,26]20.04
合計(jì)M1.00
(1)求頻率分布表中M、d、e及頻率分布直方圖中f的值;
(2)求參加鍛煉次數(shù)的眾數(shù)(直接寫(xiě)出答案,不要求計(jì)算過(guò)程);
(3)若參加鍛煉次數(shù)不少于18次為及格,估計(jì)這次體育鍛煉的及格率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:解答題

閱讀下列有關(guān)光線的入射與反射的兩個(gè)事實(shí)現(xiàn)象,現(xiàn)象(1):光線經(jīng)平面鏡反射滿足入射角與反射角相等(如圖1);現(xiàn)象(2):光線從橢圓的一個(gè)焦點(diǎn)出發(fā)經(jīng)橢圓反射后通過(guò)另一個(gè)焦點(diǎn)(如圖2).試結(jié)合上述事實(shí)現(xiàn)象完成下列問(wèn)題:

(1)有一橢圓型臺(tái)球桌,長(zhǎng)軸長(zhǎng)為短軸長(zhǎng)為.將一放置于焦點(diǎn)處的桌球擊出,經(jīng)過(guò)球桌邊緣的反射(假設(shè)球的反射完全符合現(xiàn)象(2))后第一次返回到該焦點(diǎn)時(shí)所經(jīng)過(guò)的路程記為,求的值(用表示);

(2)結(jié)論:橢圓上任一點(diǎn)處的切線的方程為.記橢圓的方程為

①過(guò)橢圓的右準(zhǔn)線上任一點(diǎn)向橢圓引切線,切點(diǎn)分別為,求證:直線恒過(guò)一定點(diǎn);

②設(shè)點(diǎn)為橢圓上位于第一象限內(nèi)的動(dòng)點(diǎn),為橢圓的左右焦點(diǎn),點(diǎn)的內(nèi)心,直線軸相交于點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=($\frac{1}{2}$)x-log${\;}_{\frac{1}{2}}$x的零點(diǎn)所在的區(qū)間是( 。
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.卵形線是常見(jiàn)曲線的一種,分笛卡爾卵形線和卡西尼卵形線,卡西尼卵形線是平面內(nèi)與兩個(gè)定點(diǎn)(叫做焦點(diǎn))距離之積等于常數(shù)的點(diǎn)的軌跡.某同學(xué)類比橢圓與雙曲線對(duì)卡西尼卵形線進(jìn)行了相關(guān)性質(zhì)的探究,設(shè)焦點(diǎn)F1(-c,0),F(xiàn)2(c,0)是平面內(nèi)兩個(gè)定點(diǎn),|PF1|•|PF2|=a2(a是定長(zhǎng)),得出卡西尼卵形線的相關(guān)結(jié)論:
①當(dāng)a=0,c=1時(shí),次軌跡為兩個(gè)點(diǎn)F1(-1,0),F(xiàn)2(1,0);
②若a=c,則曲線過(guò)原點(diǎn);
③若0<a<c,則曲線不存在;
④既是軸對(duì)稱也是中心對(duì)稱圖形.
其中正確命題的序號(hào)是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)命題p:方程$\frac{{x}^{2}}{1-m}$+$\frac{{y}^{2}}{m+2}$=1表示雙曲線;命題q:$\frac{{x}^{2}}{2m}$+$\frac{{y}^{2}}{2-m}$=1表示焦點(diǎn)在x軸上的橢圓,若p∧q是假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知0<a<3,復(fù)數(shù)z=a+i(i是虛數(shù)單位),則|z|的取值范圍是( 。
A.(1,$\sqrt{10}$)B.(1,$\sqrt{3}$)C.(1,3)D.(1,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤1}\\{-{x}^{2}+4x-\frac{5}{2},x>1}\end{array}\right.$,若函數(shù)y=f(x)-a恰有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,$\frac{3}{2}$)C.($\frac{1}{2}$,$\frac{5}{2}$)D.($\frac{3}{2}$,$\frac{5}{2}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案