A. | 7 | B. | 8 | C. | 22 | D. | 23 |
分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ 2x-y-3≤0\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y-3=0}\end{array}\right.$,解得B(4,5),
化目標(biāo)函數(shù)z=2x+3y為$y=-\frac{2}{3}x+\frac{z}{3}$,
由圖可知,當(dāng)直線$y=-\frac{2}{3}x+\frac{z}{3}$過B時,直線在y軸上的截距最大,z有最大值為2×4+3×5=23.
故選:D.
點(diǎn)評 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=x+1與y=\frac{{{x^2}+x}}{x}$ | B. | $f(x)=\frac{x^2}{{{{({\sqrt{x}})}^2}}}與g(x)=x$ | ||
C. | $f(x)=x\frac{|x|}{x}與f(t)=\left\{\begin{array}{l}t(t>0)\\-t(t<0)\end{array}\right.$ | D. | $f(x)=|x|與g(x)=\left\{\begin{array}{l}x(x>0)\\-x(x<0)\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (kπ-$\frac{π}{2}$,kπ)(k∈Z) | B. | (kπ,kπ+$\frac{π}{2}$)(k∈Z) | C. | (kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$)(k∈Z) | D. | (kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$)(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 16+16$\sqrt{2}$ | C. | 48 | D. | 16+32$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com