13.在數(shù)列{an}和{bn}中,an=2n+3,bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$,則數(shù)列{bn}的前n項和Sn=$\frac{1}{2}$($\sqrt{2n+5}$-$\sqrt{5}$).

分析 通過an=2n+3、分母有理化可知bn=$\frac{1}{2}$($\sqrt{2n+5}$-$\sqrt{2n+3}$),并項相加即得結(jié)論.

解答 解:∵an=2n+3,
∴bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$
=$\frac{1}{\sqrt{2n+3}+\sqrt{2n+5}}$
=$\frac{(\sqrt{2n+5}-\sqrt{2n+3})}{(\sqrt{2n+5}+\sqrt{2n+3})•(\sqrt{2n+5}-\sqrt{2n+3})}$
=$\frac{1}{2}$($\sqrt{2n+5}$-$\sqrt{2n+3}$),
∴Sn=$\frac{1}{2}$($\sqrt{7}$-$\sqrt{5}$+$\sqrt{9}-\sqrt{7}$+…+$\sqrt{2n+5}$-$\sqrt{2n+3}$)
=$\frac{1}{2}$($\sqrt{2n+5}$-$\sqrt{5}$),
故答案為:$\frac{1}{2}$($\sqrt{2n+5}$-$\sqrt{5}$).

點評 本題考查數(shù)列的求和,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求和:-$\frac{1}{2}$+1×$\frac{1}{4}$+3×$\frac{1}{8}$+…+(2n-1)×$\frac{1}{{2}^{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若△ABC的內(nèi)角A,B,C所對的邊a,b,c滿足(a+b)2-c2=4,且cosC=$\frac{1}{3}$,則△ABC周長的最小值為( 。
A.$\sqrt{6}$+$\sqrt{2}$B.$\sqrt{6}$+$\sqrt{3}$C.$\sqrt{5}$+$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,x≤1}\\{\frac{1}{x},x>1}\end{array}\right.$,則${∫}_{-1}^{e}$f(x)dx等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(x)+g(x)=x+1,則f(x)=x,g(x)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.定義在(-1,1)上的奇函數(shù)f(x)是減函數(shù),且f(a-2)+f(4-a2)<0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.把下列直角坐標(biāo)方程化成極坐標(biāo)方程:
(1)x2+y2=1
(2)xy=1
(3)x2+y2+2x=0
(4)x2-y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)是奇函數(shù),在(0,+∞)上是增函數(shù).證明:f(x)在(-∞,0)上也是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.下列各函數(shù)中哪些是周期函數(shù)?對周期函數(shù)指出其周期.
(1)y=sin2x;
(2)y=cos(ωx+θ)(ω,θ為常數(shù)且ω≠0);
(3)y=cos$\frac{1}{x}$.

查看答案和解析>>

同步練習(xí)冊答案