分析 先求出函數(shù)f(x)的導(dǎo)數(shù),問題轉(zhuǎn)化為:方程${x^2}-2x=\frac{1}{3}{a^2}-a$在區(qū)間[0,a]有兩個(gè)解,解不等式組解出即可.
解答 解:由題意可知,在區(qū)間[0,a]上存在x1,x2(0<x1<x2<a),
滿足${f^'}({x_1})={f^'}({x_2})=\frac{f(a)-f(0)}{a-0}=\frac{{\frac{1}{3}{a^3}-{a^2}}}{a}=\frac{1}{3}{a^2}-a$,
∵$f(x)=\frac{1}{3}{x^3}-{x^2}+a$,
∴f′(x)=x2-2x,
∴方程${x^2}-2x=\frac{1}{3}{a^2}-a$在區(qū)間[0,a]有兩個(gè)解,
令$g(x)={x^2}-2x-\frac{1}{3}{a^2}+a,(0<x<a)$,
則$\left\{\begin{array}{l}△=4+\frac{4}{3}{a^2}-4a>0\\ g(0)=\frac{1}{3}{a^2}+a>0\\ g(a)=\frac{2}{3}{a^2}-a>0\\ a>1\end{array}\right.$,解得:$\frac{3}{2}<a<3$,
故答案為:$(\frac{3}{2},3)$.
點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查導(dǎo)數(shù)的應(yīng)用,解不等式問題,理解所給 定義是解題的關(guān)鍵,本題是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b≥4 | B. | a≥4>b | C. | a<b≤4 | D. | a≤4<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com