分析 根據(jù)$\overrightarrow{AD}$•$\overrightarrow{AB}$=$\overrightarrow{AD}$•$\overrightarrow{AC}$,可推得AD⊥CB,通過解直角三角形可得AD=2及∠BAD=60°,由數(shù)量積定義可求答案.
解答 解:由$\overrightarrow{AD}$•$\overrightarrow{AB}$=$\overrightarrow{AD}$•$\overrightarrow{AC}$,
得$\overrightarrow{AD}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,
即$\overrightarrow{AD}$•$\overrightarrow{CB}$=0,
∴$\overrightarrow{AD}$⊥$\overrightarrow{CB}$,即AD⊥CB,
又AB=4,∠ABC=30°,
∴AD=AB×sin30°=2,∠BAD=60°,
∴$\overrightarrow{AD}$•$\overrightarrow{AB}$=AD×ABcos∠BAD=2×4×cos60°=4,
故答案為:4.
點評 本題考查平面向量數(shù)量積的運算及其定義,屬基礎(chǔ)題.熟練掌握數(shù)量積的運算性質(zhì)是解決相關(guān)問題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=7,b=14,A=30°△ABC有兩解 | B. | a=9,c=10,A=60°△ABC無解 | ||
C. | a=6,b=9,A=45°△ABC有兩解 | D. | a=30,b=25,A=150°△ABC有一解 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
關(guān)注NBA | 不關(guān)注NBA | 合計 | |
男生 | 6 | ||
女生 | 10 | ||
合計 | 48 |
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 60.635 | 7.879 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com