設集合A={x||x-1|<1},B={x|y=
1-3x
}
,則A∩B=( 。
A、(-∞,
1
3
)
B、(0,
1
3
)
C、(0,
1
3
]
D、(0,2)
考點:交集及其運算
專題:集合
分析:求出A中不等式的解集確定出A,求出B中x的范圍確定出B,找出兩集合的交集即可.
解答: 解:由A中不等式變形得:-1<x-1<1,
解得:0<x<2,即A=(0,2),
由B中y=
1-3x
,得到1-3x≥0,即x≤
1
3

∴B=(-∞,
1
3
],
則A∩B=(0,
1
3
],
故選:C.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若直線l沿x軸負方向平移3個單位,再沿y軸正方向平移1個單位后,又回到原來位置,那么直線l的斜率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,
1-x
x
),
b
=(x-1,1),則使得|
a
+
b
|取最小值的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=lg(-x2+4x-3)的定義域為M,當x∈M,則f(x)=2x+1-4x+1的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
π
4
<x<y
4
,且cos(x-y)=
12
13
,sin(x+y)=-
3
5
,求cos2x及sin2y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=4x焦點F的直線與拋物線交于A,B兩點,如果
AF
=2
FB
,則直線AB的方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別是A、B、C的對邊,且滿足
cosB
cosC
=-
b
2
a+c

(1)求角B的值;
(2)若a=1,c=2
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
2
3x+1
(x∈R),其中a∈R.
(Ⅰ)是否存在實數(shù)a,使f(x)為奇函數(shù)?若存在求出a的值,若不存在說明理由;
(Ⅱ)判斷并證明f(x)的單調性;
(Ⅲ)若對任意實數(shù)x∈(0,1),由f(λx+1)>f(λ2+x)恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(-2,0),B(2,0),P是圓C:(x+3)2+(y-4)2=9上一動點.
(1)求△PAB的重心G的軌跡;
(2)求|PA|2+|PB|2的最大值,最小值.

查看答案和解析>>

同步練習冊答案