【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線經(jīng)過(guò)點(diǎn),曲線的直角坐標(biāo)方程為.
(1)求曲線的普通方程,曲線的極坐標(biāo)方程;
(2)若,是曲線上兩點(diǎn),當(dāng)時(shí),求的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】司機(jī)在開(kāi)機(jī)動(dòng)車時(shí)使用手機(jī)是違法行為,會(huì)存在嚴(yán)重的安全隱患,危及自己和他人的生命. 為了研究司機(jī)開(kāi)車時(shí)使用手機(jī)的情況,交警部門調(diào)查了名機(jī)動(dòng)車司機(jī),得到以下統(tǒng)計(jì):在名男性司機(jī)中,開(kāi)車時(shí)使用手機(jī)的有人,開(kāi)車時(shí)不使用手機(jī)的有人;在名女性司機(jī)中,開(kāi)車時(shí)使用手機(jī)的有人,開(kāi)車時(shí)不使用手機(jī)的有人.
(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為開(kāi)車時(shí)使用手機(jī)與司機(jī)的性別有關(guān);
開(kāi)車時(shí)使用手機(jī) | 開(kāi)車時(shí)不使用手機(jī) | 合計(jì) | |
男性司機(jī)人數(shù) | |||
女性司機(jī)人數(shù) | |||
合計(jì) |
(2)以上述的樣本數(shù)據(jù)來(lái)估計(jì)總體,現(xiàn)交警部門從道路上行駛的大量機(jī)動(dòng)車中隨機(jī)抽檢3輛,記這3輛車中司機(jī)為男性且開(kāi)車時(shí)使用手機(jī)的車輛數(shù)為,若每次抽檢的結(jié)果都相互獨(dú)立,求的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):
參考數(shù)據(jù):
參考公式
span>,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】朱載堉(1536—1611),明太祖九世孫,音樂(lè)家、數(shù)學(xué)家、天文歷算家,在他多達(dá)百萬(wàn)字的著述中以《樂(lè)律全書(shū)》最為著名,在西方人眼中他是大百科全書(shū)式的學(xué)者王子。他對(duì)文藝的最大貢獻(xiàn)是他創(chuàng)建了“十二平均律”,此理論被廣泛應(yīng)用在世界各國(guó)的鍵盤樂(lè)器上,包括鋼琴,故朱載堉被譽(yù)為“鋼琴理論的鼻祖”!笆骄伞笔侵敢粋(gè)八度有13個(gè)音,相鄰兩個(gè)音之間的頻率之比相等,且最后一個(gè)音頻率是最初那個(gè)音頻率的2倍,設(shè)第二個(gè)音的頻率為,第八個(gè)音的頻率為,則等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,為的中點(diǎn),將沿直線翻折成,連結(jié),為的中點(diǎn),則在翻折過(guò)程中,下列說(shuō)法中所有正確的是( )
A.存在某個(gè)位置,使得
B.翻折過(guò)程中,的長(zhǎng)是定值
C.若,則
D.若,當(dāng)三棱錐的體積最大時(shí),三棱錐的外接球的表面積是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意正整數(shù),若存在數(shù)列,滿足,其中,則稱數(shù)列為正整數(shù)的生成數(shù)列,記為.
(1)寫(xiě)出2018的生成數(shù)列;
(2)求證:對(duì)任意正整數(shù),存在唯一的生成數(shù)列;
(3)求生成數(shù)列的所有項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),定義函數(shù),給出下列命題:①;②函數(shù)是奇函數(shù);③當(dāng)時(shí),若,,總有成立,其中所有正確命題的序號(hào)是( )
A.②B.①②C.③D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,分別為雙曲線的左、右焦點(diǎn),點(diǎn)P是以為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線段的中點(diǎn)Q在C的漸近線上,則C的兩條漸近線方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“移動(dòng)支付、高鐵、網(wǎng)購(gòu)、共享單車”被稱為中國(guó)的“新四大發(fā)明”.為了幫助50歲以上的中老年人更快地適應(yīng)“移動(dòng)支付”,某機(jī)構(gòu)通過(guò)網(wǎng)絡(luò)組織50歲以上的中老年人學(xué)習(xí)移動(dòng)支付相關(guān)知識(shí).學(xué)習(xí)結(jié)束后,每人都進(jìn)行限時(shí)答卷,得分都在內(nèi).在這些答卷(有大量答卷)中,隨機(jī)抽出份,統(tǒng)計(jì)得分繪出頻率分布直方圖如圖.
(1)求出圖中的值,并求樣本中,答卷成績(jī)?cè)?/span>上的人數(shù);
(2)以樣本的頻率為概率,從參加這次答卷的人群中,隨機(jī)抽取名,記成績(jī)?cè)?/span>分以上(含分)的人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),其中,函數(shù)在點(diǎn)處的切線方程為,其中.
(1)求和并證明函數(shù)有且僅有一個(gè)零點(diǎn);
(2)當(dāng)時(shí),恒成立,求最小的整數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com