15.i是虛數(shù)單位,若$\frac{2+i}{1+i}$=a+bi(a,b∈R),則log2(a-b)的值是(  )
A.-1B.1C.0D.$\frac{1}{2}$

分析 把復(fù)數(shù)方程化簡,利用復(fù)數(shù)相等的定義,求解方程組,可解得a-b的值,再根據(jù)對數(shù)的性質(zhì)即可求出.

解答 解:因為$\frac{2+i}{1+i}=\frac{{({2+i})({1-i})}}{{({1+i})({1-i})}}=\frac{3-i}{2}=\frac{3}{2}-\frac{1}{2}i$,
所以由復(fù)數(shù)相等的定義可知$a=\frac{3}{2},b=-\frac{1}{2}$,
所以log2(a-b)=log22=1.
故選:B

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算和對數(shù)的運(yùn)算性質(zhì),屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某中學(xué)對男女學(xué)生是否喜愛古典音樂進(jìn)行了一個調(diào)查,調(diào)查者對學(xué)校高三年級隨機(jī)抽取了100名學(xué)生,調(diào)查結(jié)果如表:
喜愛不喜愛總計
男學(xué)生6080
女學(xué)生
總計7030
(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認(rèn)為“男學(xué)生和女學(xué)生喜歡古典音樂的程度有差異”;
(2)從以上被調(diào)查的學(xué)生中以性別為依據(jù)采用分層抽樣的方式抽取5名學(xué)生,再從這5名學(xué)生中隨機(jī)抽取2名學(xué)生去某古典音樂會的現(xiàn)場觀看演出,求正好有1名男生被抽中的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-k}\\{y=3-2k}{\;}\end{array}\right.$(k為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系.圓C的極坐標(biāo)方程為ρ=2sinθ.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A,B,若點(diǎn)M的坐標(biāo)為(2,3).求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.根據(jù)如圖所示的程序語句,若輸入的x值為3,則輸出的y值為( 。
A.2B.3C.6D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直線l與圓x2+y2+2x-4y+a=0(a<3)交于A,B兩點(diǎn),且弦AB的中點(diǎn)為(0,1),則直線l的方程是( 。
A.y=-2x+1B.y=2x+1C.y=-x+1D.y=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,焦距為4,P是雙曲線右支上的一點(diǎn),F(xiàn)2P與y軸交于點(diǎn)A,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,若|PQ|=1,則雙曲線的離心率是( 。
A.3B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如表,y=f'(x)的圖象如圖所示,下列關(guān)于函數(shù)f(x)的命題:
x-1045
f(x)1221
①函數(shù)f(x)的值域為[0,2];
②函數(shù)f(x)在區(qū)間[0,2]和[4,5]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時,函數(shù)y=f(x)-a有4個零點(diǎn).
其中是真命題的是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合P={0,1,2},Q={y|y=3x},則P∩Q的子集的個數(shù)是( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.從編號依次為1,2,3….100的個體中,用系統(tǒng)抽樣方法抽取5個個體,則抽出的編號可能為( 。
A.5,15,25,35,45B.25,45,65,85,100C.10,30,50,70,90D.23,33,45,53,63

查看答案和解析>>

同步練習(xí)冊答案