20.如圖,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,焦距為4,P是雙曲線右支上的一點(diǎn),F(xiàn)2P與y軸交于點(diǎn)A,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,若|PQ|=1,則雙曲線的離心率是( 。
A.3B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 由|PQ|=1,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,根據(jù)切線長定理,可得|PF1|-|PF2|=2,結(jié)合|F1F2|=4,即可得出結(jié)論.

解答 解:∵雙曲線的焦距為4,
∴|F1F2|=4,∴c=2
∵|PQ|=1,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,
∴根據(jù)切線長定理可得AM=AN,F(xiàn)1M=F1Q,PN=PQ,
∵|AF1|=|AF2|,
∴AM+F1M=AN+PN+NF2
∴F1M=PN+NF2=PQ+PF2
∴|PF1|-|PF2|=F1Q+PQ-PF2=F1M+PQ-PF2=PQ+PF2+PQ-PF2=2PQ=2,
即2a=2,則a=1,
∵a=1,c=2
∴雙曲線的離心率是e=$\frac{c}{a}$=2.
故選:D.

點(diǎn)評(píng) 本題主要考查雙曲線的離心率,考查三角形內(nèi)切圓的性質(zhì),考查切線長定理,考查學(xué)生的計(jì)算能力,利用雙曲線的定義進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知實(shí)數(shù)x,y滿足x2+y2+2x=0,則x+y的最小值為-$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(1+x)8(1+y)4的展開式中x2y2的系數(shù)是168.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.根據(jù)如圖所示的程序語句,若輸入的值為3,則輸出的y值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.i是虛數(shù)單位,若$\frac{2+i}{1+i}$=a+bi(a,b∈R),則log2(a-b)的值是( 。
A.-1B.1C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,平行四邊形ABCD中,AB⊥BD,DE⊥BC,∠A=60°,將△ABD,△DCE分別沿BD,DE折起,使AB∥CE.
(1)求證:AB⊥BE;
(2)若四棱錐D-ABEC的體積為$\frac{3\sqrt{3}}{2}$,求CE長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=alnx+$\frac{1}{2}$bx2+x,(a,b∈R)
(Ⅰ)若函數(shù)f(x)在x1=1,x2=2處取得極值,求a,b的值,并求出極值
(Ⅱ)若函數(shù)f(x)在(1,f(1))處的切線的斜率為1,存在x∈[1,e],使得f(x)-x≤(a+2)(-$\frac{1}{2}$x2+x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=6,S4=12,定義$\underset{\stackrel{n}{π}}{k=1}$a2k-1=a1+a3+…+a2n-1為數(shù)列{an}的前n項(xiàng)奇數(shù)項(xiàng)之和,則$\underset{\stackrel{n}{π}}{k=1}$a2k-1=( 。
A.2n2-6n+4B.n2-3n+2C.2n2-2nD.n2-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若f(x)=Asinωx(A>0,ω>0)的部分圖象.
(1)求A,ω的值;
(2)求函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案