16.已知角α的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊與單位圓的交點(diǎn)為A(x0,$\frac{4}{5}$),則sin(2α-$\frac{π}{2}$)=$\frac{7}{25}$.(用數(shù)值表示)

分析 根據(jù)已知可得sinα=$\frac{4}{5}$,進(jìn)而利用誘導(dǎo)公式和二倍角公式,可得sin(2α-$\frac{π}{2}$)的值.

解答 解:∵角α的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊與單位圓的交點(diǎn)為A(x0,$\frac{4}{5}$),
∴sinα=$\frac{4}{5}$,
∴sin(2α-$\frac{π}{2}$)=-cos2α=-(1-2sin2α)=2sin2α-1=2×$(\frac{4}{5})^{2}-1$=$\frac{7}{25}$,
故答案為:$\frac{7}{25}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是任意角三角函數(shù)的定義,誘導(dǎo)公式和二倍角公式,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2sin(2x+$\frac{π}{3}$)+1.
(1)試寫出f(x)的周期及單調(diào)增區(qū)間;
(2)若{x|f(x)=a,0≤x≤$\frac{π}{4}$}≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合A={x∈Z|x2-x-2≤0},B={x∈Z|-5<2x+1≤3},則A∪B=( 。
A.{-1,0,1}B.{-3,-2,-1,0,1,2 }C.{-2,-1,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為 Sn,對(duì)于任意的正整數(shù)n,直線x+y=2n總是把圓 ${(x-n)^2}+{(y-\sqrt{S_n})^2}=2{n^2}$平均分為兩部分,各項(xiàng)均為正數(shù)的等比數(shù)列 {bn}中,b6=b3b4,且 b3和 b5的等差中項(xiàng)是 2a3
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=anbn,求數(shù)列 {cn}的前n項(xiàng)和 Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.定義在R上的函數(shù)f(x)是增函數(shù),且對(duì)任意的x恒有f(x)=-f(2-x),若實(shí)數(shù)a,b滿足不等式組$\left\{\begin{array}{l}{f({a}^{2}-6a+23)+f(^{2}-8b)≤0}\\{a≥3}\end{array}\right.$,則a2+b2的范圍為[13,49].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(-1,1),$\overrightarrow{c}$=(-3,1),則$\overrightarrow{c}$•($\overrightarrow{a}$+$\overrightarrow$)=(  )
A.(6,3)B.(-6,3)C.-3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知二項(xiàng)式(a+$\frac{x}$)7(其中$\frac{a}$=$\frac{\sqrt{6}}{2}$)的展開式中x4的系數(shù)為70,則a等于(  )
A.$\frac{9}{2}$B.$\frac{3}{2}$C.$\frac{4}{9}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.由命題p:“函數(shù)y=$\frac{1}{x}$是減函數(shù)”與q:“數(shù)列a、a2、a3…是等比數(shù)列”構(gòu)成的復(fù)合命題,下列判斷正確的是( 。
A.p或q為真,p且q為假,非p為真B.p或q為假,p且q為假,非p為真
C.p或q為真,p且q為假,非p為假D.p或q為假,p且q為真,非p為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)y=sin$\frac{x}{2}$-cos$\frac{x}{2}$.
(1)用“五點(diǎn)法”作出該函數(shù)在一個(gè)周期內(nèi)的簡(jiǎn)圖;
(2)求函數(shù)的振幅、周期.
(3)當(dāng)x取何值時(shí),函數(shù)有最值,最值為多少?
(4)求出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案