18.已知△ABC是圓O(O為坐標(biāo)原點(diǎn))的內(nèi)接三角形,其中A(1,0),B(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),角A,B,C的對邊分別為A,B,C.
(Ⅰ)若點(diǎn)C的坐標(biāo)是(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),求cos∠COB;
(Ⅱ)若點(diǎn)C在優(yōu)弧$\widehat{AB}$上運(yùn)動(dòng),求a+b的最大值.

分析 (Ⅰ)由點(diǎn)C,B的坐標(biāo)可以得到∠AOC,∠AOB,即可由cos∠COB=cos(∠AOC+∠AOB)得解.
(Ⅱ)由正弦定理可得a+b=2sinA+2sin($\frac{2π}{3}$-A)=2$\sqrt{3}$sin(A+$\frac{π}{6}$),由題意求得角C可得A的范圍,從而可求a+b的最大值.

解答 解:(Ⅰ)由點(diǎn)C,B的坐標(biāo)可以得到∠AOC=$\frac{3π}{4}$,∠AOB=$\frac{2π}{3}$,…(2分)
所以cos∠COB=cos(∠AOC+∠AOB)=-$\frac{\sqrt{2}}{2}$×$(-\frac{1}{2})-\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}$=-$\frac{\sqrt{6}-\sqrt{2}}{4}$;…(6分)
(Ⅱ)因?yàn)閏=$\sqrt{3}$,∠AOB=$\frac{2π}{3}$,所以C=$\frac{π}{3}$,所以$\frac{a}{sinA}=\frac{sinB}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}=2$,…(8分)
所以a+b=2sinA+2sin($\frac{2π}{3}$-A)=2$\sqrt{3}$sin(A+$\frac{π}{6}$),(0<A<$\frac{2π}{3}$),…(11分)
所以當(dāng)A=$\frac{π}{3}$時(shí),a+b最大,最大值是2$\sqrt{3}$.…(12分)

點(diǎn)評 本題主要考查了正弦定理,三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用,考查了正弦函數(shù)的圖象和性質(zhì),屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若△ABC內(nèi)角A滿足sin2A=$\frac{3}{4}$,則sinA+cosA=( 。
A..$±\frac{{\sqrt{7}}}{2}$B..$\frac{{\sqrt{7}}}{2}$C..$-\frac{{\sqrt{7}}}{2}$D.$\frac{{\sqrt{7}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,AB=2,AC=3,$\overrightarrow{AB}•\overrightarrow{AC}=3$,則BC=(  )
A.$\sqrt{3}$B.$\sqrt{7}$C.$\sqrt{19}$D.$\sqrt{23}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.對于一組向量$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$(n∈N*),令$\overrightarrow{S_n}=\overrightarrow{a_1}+\overrightarrow{a_2}+\overrightarrow{a_3}+…+\overrightarrow{a_n}$,如果存在$\overrightarrow{a_p}$(p∈{1,2,3…,n}),使得|$\overrightarrow{a_p}|≥|\overrightarrow{S_n}-\overrightarrow{a_p}$|,那么稱$\overrightarrow{a_p}$是該向量組的“h向量”.
(1)設(shè)$\overrightarrow{a_n}$=(n,x+n)(n∈N*),若$\overrightarrow{a_3}$是向量組$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$的“h向量”,
求實(shí)數(shù)x的取值范圍;
(2)若$\overrightarrow{a_n}=({(\frac{1}{3})^{n-1}},{(-1)^n})$(n∈N*),向量組$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$是否存在“h向量”?
給出你的結(jié)論并說明理由;
(3)已知$\overrightarrow{a_1}、\overrightarrow{a_2}、\overrightarrow{a_3}$均是向量組$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$的“h向量”,其中$\overrightarrow{a_1}$=(sinx,cosx),$\overrightarrow{a_2}$=(2cosx,2sinx).設(shè)在平面直角坐標(biāo)系中有一點(diǎn)列Q1,Q2,Q3,…,Qn滿足:Q1為坐標(biāo)原點(diǎn),Q2為$\overrightarrow{a_3}$的位置向量的終點(diǎn),且Q2k+1與Q2k關(guān)于點(diǎn)Q1對稱,Q2k+2與Q2k+1(k∈N*)關(guān)于點(diǎn)Q2對稱,求|$\overrightarrow{{Q_{2013}}{Q_{2014}}}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,奇數(shù)項(xiàng)成公差為1的等差數(shù),當(dāng)n為偶數(shù)時(shí)點(diǎn)(an,an+2)在直線y=3x+2上,又知a1=1,a2=2,則數(shù)列{an}的前2n項(xiàng)和S2n等于( 。
A.n2-n-6+3n+1B.$\frac{{3}^{n+1}-3}{2}$
C.$\frac{4{n}^{2}-2n-23+{3}^{2n+1}}{2}$D.$\frac{{n}^{2}-n-3+{3}^{n+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,設(shè)a>b>c,記x=sinAcosC,y=sinCcosA,z=sinBcosB,試比較x、y、z的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)P為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)在第一象限的一個(gè)動(dòng)點(diǎn),過點(diǎn)P向兩條漸近線作垂線,垂足分別為A,B,若A,B始終在第一或第二象限內(nèi),則該雙曲線離心率e的取值范圍為($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面是邊長為1的正方形,PD⊥底面ABCD,PD=AD,E為PC的中點(diǎn),F(xiàn)為PB上一點(diǎn),且EF⊥PB.
(1)證明:PA∥平面EDB;
(2)證明:AC⊥DF;
(3)求平面ABCD和平面DEF所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若p,q都為命題,則“p或q為真命題”是“?p且q為真命題”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案