分析 設(shè)等比數(shù)列{an}的公比是q,則q>0且q≠1,根據(jù)題意和等比數(shù)列的前n項(xiàng)和公式列出方程組,通過消元和因式分解求出qn和$\frac{{a}_{1}}{1-q}$的值,再求出S4n的值.
解答 解:由題意設(shè)等比數(shù)列{an}的公比是q,則q>0且q≠1,
∵Sn=2,S3n=14,∴$\left\{\begin{array}{l}{\frac{{a}_{1}(1-{q}^{n})}{1-q}=2}\\{\frac{{a}_{1}(1-{q}^{3n})}{1-q}=14}\end{array}\right.$,
兩式相除可得,q3n-7qn+6=0,則q3n-1-7(qn-1)=0,
即(qn-1)(q2n+qn-6)=0,解得qn=1或2或-3,則qn=2,
代入$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=2得,$\frac{{a}_{1}}{1-q}$=-2,
∴S4n=$\frac{{a}_{1}(1-{q}^{4n})}{1-q}$=30,
故答案為:30.
點(diǎn)評 本題考查等比數(shù)列的前n項(xiàng)和公式,以及整體代換求值,注意q與1的關(guān)系,考查化簡、計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n2 | B. | n3 | C. | 2n3 | D. | n4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-3)∪(0,3) | B. | (-∞,-3)∪(3,+∞) | C. | (-3,0)∪(3,+∞) | D. | (-3,0)∪(0,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{AD}$ | B. | $\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$ | C. | $\overrightarrow{AB}$+$\overrightarrow{DC}$=$\overrightarrow{AD}$ | D. | $\overrightarrow{AB}$-$\overrightarrow{DC}$=$\overrightarrow{BC}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com