已知實數(shù)x,y滿足
x+y≤2
x-2y-2≤0
2x-y+2≥0
,在目標(biāo)函數(shù)z=2x+y的最小值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求最小值.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點A時,直線y=-2x+z的截距最小,
此時z最。
x-2y-2=0
2x-y+2=0
,解得
x=-2
y=-2
,即C(-2,-2),
代入目標(biāo)函數(shù)z=2x+y得z=-2×2-21=-6.
即目標(biāo)函數(shù)z=2x+y的最小值為-6.
故答案為:-6
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在橢圓
x2
25
+
y2
16
=1
上求一點P,使它到右焦點F2的距離等于它到左焦點F1距離的4倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx(x>1),P(x0,y0)為函數(shù)f(x)圖象上一點,且導(dǎo)函數(shù)f′(x)=
1
x
,則以P(x0,y0)為切點的函數(shù)圖象的切線的傾斜角的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
5
+y2=1的左、右焦點分別是F1、F2,P是橢圓上的一個動點,延長F1P到Q,使得PQ=PF2,則當(dāng)點P變化時,線段F1Q的中點M的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y是實數(shù),設(shè)P=x2+2xy+2y2+2x+4y+5,則P的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前m項和為30,前2m項和為100,則它的前3m項和為
 
,前5m項和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x-y+2≤0
x≥1
x+y-7≤0
,則
y
x
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校研究性學(xué)習(xí)小組從汽車市場上隨機(jī)抽取20輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計結(jié)果分成5組:[50,100),[100,150),[150,200),[200,250),[250,300],繪制成如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中x的值;
(Ⅱ)求續(xù)駛里程在[200,300]的車輛數(shù);
(Ⅲ)若從續(xù)駛里程在[200,300]的車輛中隨機(jī)抽取2輛車,求其中恰有一輛車的續(xù)駛里程為[200,250)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有兩份相同的化學(xué)物質(zhì)分別放入并排擺放的8個容器中的某兩個容器內(nèi),要求放有化學(xué)物質(zhì)的兩個容器之間的間隔不小于4個,問不同的放入方法有多少種?

查看答案和解析>>

同步練習(xí)冊答案