3.(x-1)8展開式中第4項(xiàng)的二項(xiàng)式系數(shù)是(  )
A.70B.-70C.56D.-56

分析 由題意知利用二項(xiàng)展開式的通項(xiàng)公式寫出展開式的通項(xiàng),寫出出展開式中第4項(xiàng)的二項(xiàng)式系數(shù),得到結(jié)果.

解答 解:二項(xiàng)式(x-1)8的展開式中第4項(xiàng)的二項(xiàng)式系數(shù)是C83=56.
故選:C.

點(diǎn)評(píng) 本題考查二項(xiàng)式定理的應(yīng)用,基本知識(shí)的考查,注意項(xiàng)的系數(shù)與二項(xiàng)式系數(shù)的區(qū)別.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=$\sqrt{3}$sin2x+cos2(x+$\frac{π}{4}$)的振幅為$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=sin(2x+$\frac{π}{6}$)sin(2x+$\frac{2π}{3}$)的最小正周期為(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)y=f(x)是奇函數(shù),且f(1)=3,則f(-1)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點(diǎn)A(1,2),B(4,-2),則線段AB的長度為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=sin(2x-$\frac{π}{6}$)的最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,已知等腰梯形ABCD的底邊長分別為2和14,腰長為10,則這個(gè)等腰梯形的外接圓E的方程為(  )
A.x2+(y-2)2=53B.x2+(y-2)2=64C.x2+(y-1)2=50D.x2+(x-1)2=64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)是2x與$\frac{2a}{x}$的平均值(x≠0.且x,a∈R).
(1)當(dāng)a=1時(shí),求f(x)在[$\frac{1}{2}$,2]上的值域;
(2)若不等式f(2x)<-2x+$\frac{1}{{2}^{x}}$+1在[0,1]上恒成立,試求實(shí)數(shù)a的取值范圍;
(3)設(shè)g(x)=$\frac{\sqrt{1-{x}^{4}}}{1+{x}^{2}}$,是否存在正數(shù)a,使得對(duì)于區(qū)間[-$\frac{2}{\sqrt{5}}$,$\frac{2}{\sqrt{5}}$]上的任意三個(gè)實(shí)數(shù)m、n、p,都存在以f(g(m)、f(g(n))、f(g(p))為邊長的三角形?若存在,試求出這樣的a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=2x-x2,則函數(shù)f(x)的零點(diǎn)的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案