18.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.B.C.D.

分析 由三視圖知該幾何體是一個組合體:下面是一個圓柱、上面是半球的一半,由三視圖求出幾何元素的長度,由球體的表面積公式、圓柱的對應(yīng)面積公式求出求出幾何體的表面積.

解答 解:由三視圖知幾何體是一個組合體:
下面是一個圓柱、上面是半球的一半,
圓柱的底面圓半徑是1、母線長是1;球的半徑是1,
∴幾何體的表面積
$S=\frac{1}{2}π×{1^2}+\frac{1}{2}π×{1^2}+\frac{1}{4}×4π×{1^2}+2π×1×1+π×{1^2}=5π$,
故選:C.

點評 本題考查三視圖求幾何體的表面積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點P在雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支上,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,若$\overrightarrow{P{F}_{1}}$2-$\overrightarrow{P{F}_{2}}$2=12a2,則該雙曲線的離心率的取值范圍是(  )
A.[3,+∞)B.(2,4]C.(2,3]D.(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}是公比小于1的正項等比數(shù)列,Sn為數(shù)列{an}的前n項和,已知S2=12,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an•(n-λ),且數(shù)列{bn}是單調(diào)遞減數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=lnx-x2的單調(diào)減區(qū)間是( 。
A.(-∞,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{\sqrt{2}}{2}$]C.[1,+∞)D.[$\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.F為拋物線C:y2=4x的焦點,過點F的直線l與C交于A,B兩點,C的準(zhǔn)線與x軸的交點為E,動點P滿足$\overrightarrow{EP}$=$\overrightarrow{EB}$+$\overrightarrow{EA}$.
(Ⅰ)求點P的軌跡方程;
(Ⅱ)當(dāng)四邊形EAPB的面積最小時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖所示的程序框圖中,x∈[-2,2],則能輸出x的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當(dāng)x∈[-2,0]時,f(x)=${(\frac{{\sqrt{2}}}{2})^x}$-1,若在區(qū)間(-2,6)內(nèi),函數(shù)y=f(x)-loga(x+2)(a>1)恰有1個零點,則實數(shù)a的取值范圍是( 。
A.(1,4]B.(1,2)∪(4,+∞)C.(4,+∞)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.二項式(x-$\frac{1}{x}$)6的展開式中x-2的系數(shù)為( 。
A.6B.15C.20D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知復(fù)數(shù)z滿足$\frac{z-i}{z}$=i,則z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案