15.用符號(hào)“∈”或“∉”填空:
(1)$\sqrt{2}$+$\sqrt{5}$∈{x|x≤2+$\sqrt{3}$};
(2)3∉{x|x=n2+1,n∈N};
(3)x=$\frac{1}{3-5\sqrt{2}}$,y=3+$\sqrt{2}$π,M={m|m=a+b$\sqrt{2}$,a∈Q,b∈Q},則x∈M,y∉M.

分析 (1)通過比較$(\sqrt{2}+\sqrt{5})^{2}$與$(2+\sqrt{3})^{2}$大小關(guān)系,從而可得出$\sqrt{2}+\sqrt{5}<2+\sqrt{3}$,從而得出$\sqrt{2}+\sqrt{5}∈\{x|x≤2+\sqrt{3}\}$;
(2)只需令3=n2+1,解出的n是否是自然數(shù)即可;
(3)將x,y都寫成$m=a+b\sqrt{2}$的形式,然后判斷是否滿足a∈Q,b∈Q即可;

解答 解:(1)$(\sqrt{2}+\sqrt{5})^{2}=7+2\sqrt{10}$,$(2+\sqrt{3})^{2}=7+4\sqrt{3}$;
$2\sqrt{10}<4\sqrt{3}$;
∴$(\sqrt{2}+\sqrt{5})^{2}<(2+\sqrt{3})^{2}$;
∴$\sqrt{2}+\sqrt{5}<2+\sqrt{3}$;
∴$\sqrt{2}+\sqrt{5}∈\{x|x≤2+\sqrt{3}\}$;
(2)令n2+1=3,則n2=2;
∵n∈N;
∴3∉{x|x=n2+1,n∈N};
(3)$x=\frac{3+5\sqrt{2}}{(3-5\sqrt{2})(3+5\sqrt{2})}=-\frac{3}{41}-\frac{5}{41}•\sqrt{2}$;
∵$-\frac{3}{41}∈Q,-\frac{5}{41}∈Q$;
∴x∈M;
y=$3+π•\sqrt{2}$,π∉Q;
∴y∉M.
故答案為:∈,∉,∈,∉.

點(diǎn)評 考查要比較兩個(gè)無理數(shù)的大小可通過平方的方法,描述法表示集合的定義,判斷元素與集合關(guān)系的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=2sin(5x+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$)的一個(gè)對稱中心是($\frac{π}{6}$,0),則φ=$\frac{π}{6}$,現(xiàn)將函數(shù)f(x)的圖象上每一點(diǎn)的橫坐標(biāo)伸長到原來的5倍,(縱坐標(biāo)不變),得到函數(shù)g(x),再將函數(shù)g(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)h(x),若h(α)=-$\frac{2}{3}$(-$\frac{π}{2}$<α<$\frac{π}{2}$),則sinα的值是-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.有學(xué)生10人,其中男生3人,女生7人,現(xiàn)需選出3人去某地調(diào)查,則3人中既有男生又有女生的概率為$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,如果4sinA+2cosB=1,2sinB+4cosA=3$\sqrt{3}$,則∠C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知tan(α-$\frac{π}{6}$)=$\frac{3}{7}$,tan(β+$\frac{π}{6}$)=$\frac{2}{5}$,則tan(α+β)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若隨機(jī)變量X服從正態(tài)分布,其正態(tài)曲線上的最高點(diǎn)的坐標(biāo)是(10,$\frac{1}{2}$),則該隨機(jī)變量的方差等于( 。
A.10B.100C.$\frac{2}{π}$D.$\sqrt{\frac{2}{π}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)是定義在(-$\frac{π}{2}$,0)$∪(0,\frac{π}{2})$上的奇函數(shù),其導(dǎo)函數(shù)為f′(x),當(dāng)x$∈(0,\frac{π}{2})$時(shí),f′(x)tanx-$\frac{f(x)}{co{s}^{2}x}$>0,且f($\frac{π}{4}$)=0,則使不等式f(x)$<\sqrt{3}f(\frac{π}{6})$tanx成立的x的取值范圍是( 。
A.(-$\frac{π}{2},-\frac{π}{6}$)∪($\frac{π}{6},\frac{π}{2}$)B.(-$\frac{π}{6},0$)∪(0,$\frac{π}{6}$)C.(-$\frac{π}{6},0$)∪($\frac{π}{6},\frac{π}{2}$)D.(-$\frac{π}{2},-\frac{π}{6}$)∪(0,$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若a,b為不等于1的正數(shù),且a<b,試比較logab、loga$\frac{1}$、logb$\frac{1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知(a-b)n的展開式中各項(xiàng)的二項(xiàng)式系數(shù)之和等于8192,則(a+b)2n的展開式中共有(  )
A.13項(xiàng)B.14項(xiàng)C.26項(xiàng)D.27項(xiàng)

查看答案和解析>>

同步練習(xí)冊答案