15.函數(shù)f(x)=$\frac{ln(x-1)}{\sqrt{4-{x}^{2}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,2)B.[1,2]C.(1,4)D.[2,4]

分析 要使函數(shù)f(x)=$\frac{ln(x-1)}{\sqrt{4-{x}^{2}}}$有意義,可得x-1>0且4-x2>0,解不等式即可得到所求定義域.

解答 解:函數(shù)f(x)=$\frac{ln(x-1)}{\sqrt{4-{x}^{2}}}$有意義,
可得x-1>0且4-x2>0,
即x>1且-2<x<2,
即有1<x<2,
則定義域?yàn)椋?,2).
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)定義域求法,注意運(yùn)用對(duì)數(shù)的真數(shù)大于0,分式分母不為0,偶次根式被開(kāi)方數(shù)非負(fù),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=xm-$\frac{4}{x}$,且f(4)=3.
(1)求m的值;
(2)求證:f(x)是奇函數(shù);
(3)若不等式f(x)-a>0在區(qū)間(1,∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.過(guò)點(diǎn)P(1,3)的動(dòng)直線與拋物線y=x2交于A,B兩點(diǎn),在A,B兩點(diǎn)處的切線分別為l1、l2,若l1和l2交于點(diǎn)Q,則圓x2+(y-2)2=4上的點(diǎn)與動(dòng)點(diǎn)Q距離的最小值為$\sqrt{5}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)F在x軸上,且過(guò)點(diǎn)(4,4).
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)P是拋物線上一動(dòng)點(diǎn),M點(diǎn)是PF的中點(diǎn),求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x)=sin(ωx+φ)+$\sqrt{3}$cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為π,且f(-x)=f(x),則( 。
A.f(x)在$({0,\frac{π}{2}})$單調(diào)遞減B.f(x)在$({\frac{π}{2},π})$單調(diào)遞減
C.f(x)在$({0,\frac{π}{2}})$單調(diào)遞增D.f(x)在(0,π)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在△ABC中,cosA=$\frac{3}{5}$,且sinB=$\frac{12}{13}$,則cosC=( 。
A.-$\frac{33}{65}$B.$\frac{33}{65}$C.$\frac{63}{65}$D.$\frac{63}{65}$或$\frac{33}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=Asin(ωx+$\frac{π}{3}$)(A>0,ω>0)最大值為2,周期為π.
(1)求實(shí)數(shù)A,ω的值;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(2,-3).
(1)若$\overrightarrow a+λ\overrightarrow b與\overrightarrow a$垂直,求λ的值;
(2)求向量$\vec a$在$\vec b$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知△ABC是邊長(zhǎng)為1的等邊三角形,點(diǎn)D,E分別是邊AB,BC的中點(diǎn),連接DE并延長(zhǎng)到點(diǎn)F,使得DE=$\frac{1}{3}$EF,則$\overrightarrow{AF}$•$\overrightarrow{BC}$的值為( 。
A.$\frac{3}{4}$B.$\frac{1}{8}$C.-$\frac{5}{8}$D.$\frac{11}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案