分析 要使函數(shù)f(x)=$\frac{ln(x-1)}{\sqrt{4-{x}^{2}}}$有意義,可得x-1>0且4-x2>0,解不等式即可得到所求定義域.
解答 解:函數(shù)f(x)=$\frac{ln(x-1)}{\sqrt{4-{x}^{2}}}$有意義,
可得x-1>0且4-x2>0,
即x>1且-2<x<2,
即有1<x<2,
則定義域?yàn)椋?,2).
故選:A.
點(diǎn)評(píng) 本題考查函數(shù)定義域求法,注意運(yùn)用對(duì)數(shù)的真數(shù)大于0,分式分母不為0,偶次根式被開(kāi)方數(shù)非負(fù),考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)在$({0,\frac{π}{2}})$單調(diào)遞減 | B. | f(x)在$({\frac{π}{2},π})$單調(diào)遞減 | ||
C. | f(x)在$({0,\frac{π}{2}})$單調(diào)遞增 | D. | f(x)在(0,π)單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{33}{65}$ | B. | $\frac{33}{65}$ | C. | $\frac{63}{65}$ | D. | $\frac{63}{65}$或$\frac{33}{65}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{8}$ | C. | -$\frac{5}{8}$ | D. | $\frac{11}{8}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com