分析 先根據(jù)條件求得n=5,可得(2x-$\frac{1}{x}$)2n的通項(xiàng)公式,從而求得(2x-$\frac{1}{x}$)2n的展開(kāi)式中系數(shù)最大的項(xiàng).
解答 解:根據(jù)($\root{3}{x}$+x2)2n的展開(kāi)式的系數(shù)和比(3x-1)n的展開(kāi)式的系數(shù)和大992,
可得22n-2n=992,求得2n=32,或 2n=31(舍去),∴n=5.
故(2x-$\frac{1}{x}$)2n=(2x-$\frac{1}{x}$)10 的展開(kāi)式的通項(xiàng)公式為 Tr+1=${C}_{10}^{r}$•(-1)r•210-r•x10-2r,
故第r+1項(xiàng)的系數(shù)為${C}_{10}^{r}$•(-1)r•210-r,檢驗(yàn)可得,當(dāng)r=4時(shí),第r+1項(xiàng)的系數(shù)為${C}_{10}^{r}$•(-1)r•210-r最大,
故(2x-$\frac{1}{x}$)2n的展開(kāi)式中系數(shù)最大的項(xiàng)為T(mén)5=13440x2.
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式;注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過(guò)給二項(xiàng)式的x賦值,求展開(kāi)式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若x2<4,則-2<x<2 | B. | 若x<-2或x>2,則x2>4 | ||
C. | 若-2<x<2,則x2<4 | D. | 若x<-2或x>2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1} | B. | {3} | C. | {0,1} | D. | {-1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com