5.已知tanα=2,tanβ=3,且α、β都是銳角,則tan$\frac{α+β}{2}$=1+$\sqrt{2}$.

分析 先利用正切的兩角和公式求得tan(α+β)的值,進而求得α+β,$\frac{α+β}{2}$的值,利用二倍角的正切函數(shù)公式即可計算得解.

解答 解:tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{2+3}{1-6}$=-1,
∵α、β都是銳角,
∴α+β=$\frac{3π}{4}$,可得:$\frac{α+β}{2}$=$\frac{3π}{8}$,tan$\frac{α+β}{2}$>0,
∵tan(α+β)=-1=$\frac{2tan\frac{α+β}{2}}{1-ta{n}^{2}\frac{α+β}{2}}$,整理可得:tan2$\frac{α+β}{2}$-2tan$\frac{α+β}{2}$-1=0,
∴解得:tan$\frac{α+β}{2}$=1+$\sqrt{2}$,或1-$\sqrt{2}$(舍去).
故答案為:1+$\sqrt{2}$.

點評 本題主要考查了兩角和與差的正切函數(shù)的公式的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,注重了對學(xué)生基礎(chǔ)知識再現(xiàn)能力的考查,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直角△ABC的一邊長a=2,另兩邊長b,c是關(guān)于x的方程x2-4x+m=0的兩個根,求m的值和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.1-iB.1+iC.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}滿足a1=-1,an=1-$\frac{1}{{a}_{n-1}}$(n>1),a2016=( 。
A.2B.1C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.從3雙不同的鞋中任取2只,則取出的2只鞋不能成雙的概率為( 。
A.$\frac{3}{5}$B.$\frac{8}{15}$C.$\frac{4}{5}$D.$\frac{7}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,角A,B,C的對邊分別為a,b,c,若B=60°,且a,b,c成等比數(shù)列,則A=60度,C=60度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列各組向量中能作為表示它們所在平面內(nèi)的所有向量的基底的是( 。
A.$\overrightarrow{a}$=(0,0),$\overrightarrow$=(1,-2)B.$\overrightarrow{a}$=(3,2),$\overrightarrow$=(6,4)C.$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(5,7)D.$\overrightarrow{a}$=(-3,-1),$\overrightarrow$=(3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對(1+x)n=1+C${\;}_{n}^{1}$x+C${\;}_{n}^{2}$x2+C${\;}_{n}^{3}$x3+…+C${\;}_{n}^{n}$xn兩邊求導(dǎo),可得n(1+x)n-1=C${\;}_{n}^{1}$+2C${\;}_{n}^{2}$x+3C${\;}_{n}^{3}$x2+…+nC${\;}_{n}^{n}$xn-1.通過類比推理,有(3x-2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,可得a1+2a2+3a3+4a4+5a5+6a6=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)=x+ln$\frac{x}{100-x}$,則f(1)+f(2)+f(3)+…+f(99)的值為( 。
A.5000B.4950C.99D.$\frac{99}{2}$

查看答案和解析>>

同步練習(xí)冊答案