17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-{y}^{2}$=1的一條漸近線與直線y=-x+1垂直,則該雙曲線的焦距為2$\sqrt{2}$.

分析 求出雙曲線的漸近線,根據(jù)直線垂直的關(guān)系求出a的值即可得到結(jié)論.

解答 解:雙曲線的漸近線為y=±$\frac{1}{a}$x,
∵雙曲線$\frac{{x}^{2}}{{a}^{2}}-{y}^{2}$=1的一條漸近線與直線y=-x+1垂直,
∴漸近線的斜率為1,
即±$\frac{1}{a}$=1,則a=±1,
即雙曲線方程為x2-y2=1,
則a=1,b=1,c=$\sqrt{2}$,
則焦距2c=2$\sqrt{2}$,
故答案為:2$\sqrt{2}$,

點評 本題主要考查雙曲線方程的應(yīng)用,根據(jù)直線垂直的關(guān)系求出a的值是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),且當(dāng)x0≥1,f(x0)≥1時,有f(f(x0))=x0.求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖所示的數(shù)陣,第n行最右邊的數(shù)是n2+n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若△ABC是半徑為$\sqrt{5}$的圓O的內(nèi)接三角形,3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,則$\overrightarrow{OC}$•$\overrightarrow{AB}$為( 。
A.1B.-1C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)y=cos2ωx(ω>0)的最小正周期是π,則ω=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等比數(shù)列{an}中,a3=16,a5=4,則a7=( 。
A.1B.-1C.±1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{-2x+3y+5≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y的最大值為( 。
A.5B.4C.-1D.$\frac{16}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|x2-2x-8>0},B={-3,-1,1,3,5},則A∩B=( 。
A.{-1,1,3}B.{-3,-1,1}C.{-3,5}D.{3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知變量x,y滿足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$,則$\frac{x+y}{x+2}$的最大值為$\frac{5}{4}$.

查看答案和解析>>

同步練習(xí)冊答案