16.設{an}是等差數(shù)列,{bn}是各項都為正數(shù)的等比數(shù)列,且a1=1,b1=2,a2+b3=10,a3+b2=7.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設數(shù)列{bn}的前n項和為Sn,記${c_n}=(1+\frac{S_n}{2})•{a_n},n∈{N^*}$,求數(shù)列{cn}的前n項和Tn

分析 (1)利用等差數(shù)列與等比數(shù)列的通項公式即可得出;
(2)利用“錯位相減法”、等比數(shù)列的通項公式與前n項和公式即可得出.

解答 解:(1)設等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,且a1=1,b1=2,a2+b3=10,a3+b2=7.
∴$\left\{\begin{array}{l}{{a}_{1}+d+_{1}{q}^{2}=10}\\{{a}_{1}+2d+_{1}q=7}\end{array}\right.$,即$\left\{\begin{array}{l}{1+d+2{q}^{2}=10}\\{1+2d+2q=7}\end{array}\right.$,
消去d得2q2-q-6=0,(2q+3)(q-2)=0,
∵{bn}是各項都為正數(shù)的等比數(shù)列,
∴q=2,d=1,
∴an=n,bn=2n
(2)Sn=2n+1-2,…(7分)
cn=an•($\frac{Sn}{2}$+1)=n•2n,
設Tn=1•21+2•22+3•23+…+n•2n
2Tn=1•22+2•23+…+(n-1)•2n+n•2n+1,
相減,可得Tn=(n-1)•2n+1+2.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與前n項和公式、“錯位相減法”,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)滿足f(x+1)=x2-1,則( 。
A.f(x)=x2-2xB.f(x)=x2+2xC.f(x)=x2-4xD.f(x)=x2+4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知全集U={1,2,3,4,5,6,7},集合A={1,3,4,6},B={2,4,5,6},則A∩(∁UB)=( 。
A.{1,3}B.{2,5}C.{4}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)y=x+$\frac{a}{x}$,(a>0),
(1)判斷函數(shù)的奇偶性;
(2)求證:f(x)在區(qū)間$({-∞,-\sqrt{a}})$上是增函數(shù);
(3)若a=4時,求該函數(shù)在區(qū)間[1,5]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設a>1,b>1且ab-(a+b)=1,那么( 。
A.ab有最大值$2\sqrt{2}+1$B.ab有最小值${(\sqrt{2}+2)^2}$C.ab有最小值${(\sqrt{2}+1)^2}$D.ab有最大值$2(\sqrt{2}+1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列命題中正確的個數(shù)是( 。
①若¬P是q的必要而不充分條件,則P是¬q的充分而不必要條件;
②命題“對任意x∈R,都有x2≥0”的否定為“存在x0∈R,使得x02<0”;
③若p∧q為假命題,則p與q均為假命題;
④命題“若x2-4x+3=0,則x=3”的逆否命題是“若x≠3,則x2-4x+3≠0”
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.△ABC的頂點B,C的坐標分別為(0,0),(4,0),AB邊上的中線的長為3,求頂點A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)y=Asin(ωx+φ)+B的一部分圖象如圖所示,如果A>0,ω>0,||φ|<$\frac{π}{2}$,則(  )
A.B=1B.φ=$\frac{π}{6}$C.ω=1D.A=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.求直線x+y-3=0關于點A(2,3)的對稱直線的方程.

查看答案和解析>>

同步練習冊答案