13.已知函數(shù)f(x)=x2+ax+b(a∈R,b∈R),A={x|x=f(x),x∈R},B={x|x=f[f(x)],x∈R},若A={-1,3}時,用列舉法表示集合B.

分析 由A={x|f(x)=x}={x|x2+ax+b=x}={x|x2+(a-1)x+b=0}={-1,3},結(jié)合方程根與系數(shù)關(guān)系可求a,b,進而可求,f(x),然后代入B={x|f[f(x)]=x}整理可求

解答 解:∵A={x|f(x)=x}={x|x2+ax+b=x}={x|x2+(a-1)x+b=0}={-1,3}
∴-1,3是方程x2+(a-1)x+b=0的根
∴$\left\{\begin{array}{l}{1-a=2}\\{b=-3}\end{array}\right.$,即a=-1,b=-3,
∴f(x)=x2-x-3
∴B={x|f[f(x)]=x}={x|f(x2-x-3)=x}={x|(x2-x-3)2-(x2-x-3)-3=x}
化簡可得,(x2-x-3)2-x2=0
∴(x2-3)(x2-2x-3)=0
∴x=$\sqrt{3}$或x=-$\sqrt{3}$或x=3或x=-1
∴B={$\sqrt{3}$,-$\sqrt{3}$,-1,3}.

點評 本題主要考查了二次函數(shù)與二次方程之間關(guān)系的相互轉(zhuǎn)化,方程的根與系數(shù)關(guān)系的應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知某地成年男子的身高X~N(175,25)(單位:cm).
(1)試求該地男子身高位于區(qū)間(170,180)上的概率是多少?
(2)若該地區(qū)某高校共有男生6000人,則身高超過185cm的男生大約有多少人?
(參考數(shù)據(jù):P(μ-σ<X<μ+σ)=63.8%,P(μ-2σ<X<μ+2σ))=95.4%,P(μ-3σ<X<μ+3σ)=99.7%)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知集合A={x|1≤x≤4},集合B={x|x2-x+k-k2<0}.若B⊆A,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.a(chǎn),b是互不相等的正數(shù),則|a-b|+$\frac{1}{a-b}$≥2,這個命題正確嗎,并解釋.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知△ABC中,3$\overrightarrow{CD}$=$\overrightarrow{CB}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{AD}$=( 。
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow$D.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知log2a≥-$\frac{3}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在△ABC中,sin2A-sin2B-sin2C+2sinBsinCcosA=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知圓$\left\{\begin{array}{l}{x=3+3\sqrt{3}cosφ}\\{y=3\sqrt{3}sinφ}\end{array}\right.$(φ為參數(shù))被圓$\left\{\begin{array}{l}{x=3cosθ}\\{y=3sinθ}\end{array}\right.$所截得的劣弧的長為( 。
A.B.$\sqrt{3}$πC.3$\sqrt{3}$πD.$\sqrt{6}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=-x2+6x+8,g(x)=f(6+2x-x2),求:函數(shù)g(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案