2.已知集合A={x|$\frac{2x+1}{x-2}$<0},B={x|x2>1},則A∩(∁RB)=( 。
A.(-$\frac{1}{2}$,1]B.[-1,$\frac{1}{2}$)C.(-$\frac{1}{2}$,$\frac{1}{2}$]D.($\frac{1}{2}$,1)

分析 求出A與B中不等式的解集分別確定出A與B,找出A與B補集的交集即可.

解答 解:由A中不等式解得:-$\frac{1}{2}$<x<2,即A=(-$\frac{1}{2}$,2),
由B中不等式解得:x>1或x<-1,即B=(-∞,-1)∪(1,+∞),
∴∁RB=[-1,1],
則A∩(∁RB)=(-$\frac{1}{2}$,1],
故選:A.

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知點F是拋物線C:y2=4x的焦點,點A在拋物線C上,若|AF|=4,則線段AF的中點到拋物線C的準線的距離為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知銳角三角形ABC,下列三角函數(shù)值為負數(shù)的有②③ 個.
①$sin({\frac{π}{2}+B})$,②$cos({\frac{π}{2}+B})$,③tan(A+B),④cos(-B)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=x(lna-lnx)(a>0).
(Ⅰ)當a=e2時,求函數(shù)f(x)在x=1處的切線方程;
(Ⅱ)若函數(shù)f(x)的圖象恒在直線x-y+1=0的下方,求實數(shù)a的取值范圍;
(Ⅲ)當a=e時,若x1,x2∈(1,$\frac{e}{2}$),且x1≠x2,判斷(x1+x24與e2x1x2的大小關系,并說明理由.
注:題目中e=2.71828…是自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知$tanβ=\frac{1}{2}$,求sin2β-3sinβcosβ+4cos2β的值是$\frac{11}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.(1)已知函數(shù)f(x)的定義域為(0,1),求f(x2)的定義域;
(2)已知函數(shù)f(2x+1)的定義域為(0,1),求f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知定義域為R的偶函數(shù),f(x)滿足對任意的x∈R,有f(x+2)=f(x)-f(1),且當,x∈[2,3]時,f(x)=-(x-2)2+1.若函數(shù)y=f(x)-a(x-$\frac{11}{12}$)在(0,+∞)上恰有三個零點,則實數(shù)a的取值范圍是($\frac{1}{3}$,$\frac{4}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.判斷函數(shù)y=$\frac{cosx-sinxcosx}{1-sinx}$的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{(x-a)lnx}{x}$,其中a∈[-e2,+∞),e=2.71828…為自然對數(shù)的底數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,證明:當x1≠x2,且f(x1)=f(x2)時,x1+x2>2.

查看答案和解析>>

同步練習冊答案