8.已知實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤1}\end{array}\right.$,則z=x-2y的最大值與最小值之差為3.

分析 由題意作出其平面區(qū)域,將z=x-2y化為y=$\frac{1}{2}$x-$\frac{z}{2}$,z相當(dāng)于直線的縱截距,由幾何意義可得.

解答 解:由題意作出其平面區(qū)域,

將z=x-2y化為y=$\frac{1}{2}$x-$\frac{1}{2}$z,
顯然直線過(1,0)時,z最大,z最大值=1,
直線過(0,1)時,z最小,z最小值=-2,
故答案為:3.

點評 本題考查了簡單線性規(guī)劃,作圖要細致認真,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知sinα-cosα=$\frac{1}{5}$(0<α<$\frac{π}{2}$),則sin2α=$\frac{24}{25}$,sin(2α-$\frac{π}{4}$)=$\frac{31\sqrt{2}}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在平面直角坐標(biāo)系中,若$\left\{\begin{array}{l}{x≤2}\\{|y-2|≤x}\end{array}\right.$,則(x+1)2+y2的取值范圍是( 。
A.[$\sqrt{5}$,5]B.[$\frac{3\sqrt{2}}{2}$,5]C.[$\frac{9}{2}$,25]D.[9,25]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,若a=7.則輸出的S=(  )
A.$\frac{6}{7}$B.$\frac{15}{8}$C.$\frac{13}{7}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知動點A在橢圓 C:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1$(a>b>0)上,動點B在直線 x=-2上,且滿足 $\overrightarrow{OA}⊥\overrightarrow{OB}$(O為坐標(biāo)原點),橢圓C上點 $M(\frac{{\sqrt{3}}}{2},3)$到兩焦點距離之和為 4$\sqrt{3}$
(I)求橢圓C方程.
(Ⅱ)求|AB|取最小值時點A的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.將一顆骰子先后拋擲2次,觀察向上的點數(shù),則所得的兩個點數(shù)中至少有一個是奇數(shù)的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=ax+1-3(a>0,a≠1)過定點A,若點A在直線mx+ny=-2(m>0,n>0)上,則$\frac{1}{m}$+$\frac{1}{n}$的最小值為( 。
A.3B.2$\sqrt{2}$C.$\frac{3+2\sqrt{2}}{2}$D.$\frac{3-2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)數(shù)列{an}的前n項和為Sn,且an+Sn=pn2+qn+r,其中p、q、r是常數(shù),n∈N*
(1)若數(shù)列{an}是等差數(shù)列且p=5,q=13,r=-2,求數(shù)列{an}的通項公式;
(2)①求證:當(dāng)3p-q+r=0時,數(shù)列{an}為等差數(shù)列;
②若r=0,且{an}是首項為1的等差數(shù)列,設(shè)Tn=$\sqrt{1+\frac{1}{{{a}_{i}}^{2}}+\frac{1}{{{a}_{i+1}}^{2}}}$,Qn=$\sum_{i=1}^{n}$(Ti-1),試問:是否存在非零函數(shù)f(x),使得f(n)Q1Q2…Qn=1,對一切正整數(shù)n都成立,若存在,求出f(x)的解析式,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的離心率等于2,它的焦點到漸近線的距離等于1,則該雙曲線的方程為$\frac{{x}^{2}}{\frac{1}{3}}-{y}^{2}=1$.

查看答案和解析>>

同步練習(xí)冊答案