11.已知直線l的方程為x=1.則該方程表示(  )
A.經(jīng)過點(1,2)垂直x軸的直線B.經(jīng)過點(1,2)垂直y軸的直線
C.經(jīng)過點(2,1)垂直x軸的直線D.經(jīng)過點(2,1)垂直y軸的直線

分析 直線l的方程為x=1,則該直線無斜率,與x軸垂直.

解答 解:直線l的方程為x=1.則該方程表示經(jīng)過點(1,2)垂直x軸的直線.
故選:A.

點評 本題考查了與x軸垂直直線的方程,考查了計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=log2(1+x)-log2(1-x).
(1)判斷f(x)的奇偶性,并予以證明;
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C的離心率為$\frac{\sqrt{2}}{2}$,右焦點為F2(1,0),過點B(2,0)作直線交橢圓C于P,Q兩點,設直線PF2和QF2的斜率分別為k1,k1
(1)求證:k1+k2為定值;
(2)求△PF2Q面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設f(x)=|2x-1|,若關于x的函數(shù)g(x)=(1-t)f2(x)-f(x)+t有三個零點,則實數(shù)t的取值范圍為(  )
A.(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)∪(1,+∞)C.($\frac{1}{2},1$)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=2x+3.數(shù)列{an}滿足a1=1,且an+1=f(an)(n∈N*),則該數(shù)列的通項公式為an=2n+1-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)一個圓經(jīng)過點P(2,-1),和直線x-y=1相切,并且圓心在直線y=-2x上,求這個圓的方程.
(2)已知兩點A(4,9)和B(6,3)兩點,求以AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.討論方程4x3+x-15=0在[1,2]內(nèi)實數(shù)解的存在性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知P(x,y)滿足不等式$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-4≥0}\\{x≤3}\end{array}\right.$,點A(1,1)則OP•cos∠AOP的取值范圍是[2$\sqrt{2}$,$\frac{9\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.己知點O為坐標原點,△ABC為圓C1:(x-1)2+(y-$\sqrt{3}$)2=1的內(nèi)接正三角形,則$\overrightarrow{OA}$•($\overrightarrow{OB}$$+\overrightarrow{OC}$)的最小值為5.

查看答案和解析>>

同步練習冊答案