若長(zhǎng)方體的長(zhǎng)、寬、高分別是2、2、1,則長(zhǎng)方體的外接球的表面積為
 
考點(diǎn):球的體積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:長(zhǎng)方體的對(duì)角線就是外接球的直徑,求出長(zhǎng)方體的對(duì)角線長(zhǎng),即可求出球的半徑,再求球的表面積.
解答: 解:由題意長(zhǎng)方體的對(duì)角線就是球的直徑,
所以長(zhǎng)方體的對(duì)角線長(zhǎng)為:
22+22+12
=3,
所以球的直徑為:3,半徑為:
3
2

球的表面積是:4πr2=9π.
故答案為:9π.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查長(zhǎng)方體的外接球的半徑的求法、球內(nèi)接多面體、球的體積和表面積,考查計(jì)算能力和空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1是一個(gè)正三棱柱零件,面AB1平行于正投影面,則零件的左視圖(如圖2)的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,AD=9,DB=4,則AC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2-2x+4y-4=0的圓心坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,G是重心,PQ過(guò)G點(diǎn),
AP
=m
AB
,
AQ
=n
AC
,若
AG
=
1
2
AQ
+
AP
),則
1
m
+
1
n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a2=6,a5=15,若bn=a2n,則數(shù)列{bn}的前5項(xiàng)和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y滿足f(x+y)+f(x-y)=2f(x)cosy且f(0)=0,
f(
π
2
)=1.給出下列結(jié)論:①f(
π
4
)=
1
2
  ②f(x)為奇函數(shù)  ③f(x)為周期函數(shù) ④f(x)在(0,π)內(nèi)單調(diào)遞增,其中正確的結(jié)論序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,化簡(jiǎn)cos2
A+B
2
+cos2
C
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)滿足:①y=f(x+1)是偶函數(shù);②在區(qū)間[1,+∞)上是增函數(shù).若x1<x2<0且x1+x2<-2,則f(-x1)與f(-x2)的大小關(guān)系是( 。
A、f(-x1)>f(-x2
B、f(-x1)<f(-x2
C、f(-x1)=f(-x2
D、無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案