13.已知數(shù)列{an}滿足a1∈(0,2],an+1=$\left\{\begin{array}{l}{{a}_{n}-2,{a}_{n}>2}\\{3-{a}_{n},{a}_{n}≤2}\end{array}\right.$,n∈N*,數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=2016,則n=1344.

分析 設(shè)a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{{a}_{n}-2,{a}_{n}>2}\\{3-{a}_{n},{a}_{n}≤2}\end{array}\right.$,n∈N*,可得a2=-a1+3=3-a∈[1,3).對(duì)a分類討論:當(dāng)a∈[1,2]時(shí),當(dāng)a∈(0,1)時(shí),利用遞推關(guān)系即可得出.

解答 解:設(shè)a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{{a}_{n}-2,{a}_{n}>2}\\{3-{a}_{n},{a}_{n}≤2}\end{array}\right.$,n∈N*,
∴a2=-a1+3=3-a∈[1,3).
①當(dāng)a∈[1,2]時(shí),3-a∈[1,2],∴a3=-a2+3=a,….
∴當(dāng)n=2k-1,k∈N*時(shí),a1+a2=a+3-a=3,∴S2k-1=3(k-1)+a=2016,a=1時(shí),a=2時(shí),k不為整數(shù)舍去;
當(dāng)n=2k,k∈N*時(shí),a1+a2=a+3-a=3,∴S2k=3k=2016,k=672是整數(shù),n=1344.
②當(dāng)a∈(0,1)時(shí),3-a∈(2,3),∴a3=a2-2=1-a∈(0,1),∴a4=-a3+3=a+2∈(2,3),a5=a4-2=a∈(2,3),….
當(dāng)n=4k,k∈N*時(shí),a1+a2+a3+a4=a+3-a+1-a+a+2=6,∴S4k=6k=2016,k=336,∴n=1344;
當(dāng)n=4k-1,k∈N*時(shí),a1+a2+a3=a+3-a+1-a=4-a,∴S4k-1=6(k-1)+(4-a)=2016,舍去;
當(dāng)n=4k-2,k∈N*時(shí),a1+a2=3,∴S4k-2=6(k-1)+3=2016,舍去.
當(dāng)4k-3,k∈N*時(shí),∴S4k-2=6(k-1)+a=2015,舍去.
綜上可得:n=1344.
故答案為:1344.

點(diǎn)評(píng) 本題考查了數(shù)列的遞推關(guān)系、分類討論思想方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.計(jì)算:${log_6}2+2{log_6}\sqrt{3}+{10^{lg2}}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=ax3-6x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0>0,則a的取值范圍是( 。
A.(-∞,-4)B.(4,+∞)C.(-∞,-4$\sqrt{2}$)D.(4$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若反比例函數(shù)f(x)=$\frac{k}{x}$的圖象在第一象限內(nèi)單調(diào)遞減,則k的取值范圍( 。
A.k≥0B.k≤0C.k>0D.k<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.△ABC的內(nèi)角A、B、C所對(duì)的邊a、b、c,且asinB-$\sqrt{3}$bcosA=0
(Ⅰ)求角A
(Ⅱ)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.當(dāng)|a|≤1,|x|≤1時(shí),關(guān)于x的不等式|x2-ax-a2|≤m恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.[$\frac{3}{4}$,+∞)B.[$\frac{5}{4}$,+∞)C.[$\frac{3}{2}$,+∞)D.[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.一個(gè)幾何體的頂點(diǎn)都在球面上,這個(gè)幾何體的三視圖如圖所示,該球的表面積是(  )
A.19πB.30πC.38πD.$\frac{{19\sqrt{38}}}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列大小關(guān)系正確的是( 。
A.${3^{\frac{1}{3}}}>{4^{\frac{1}{3}}}$B.0.30.4>0.30.3C.log76<log67D.sin3>sin2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知四邊形OADB是以向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$為邊的平行四邊形,點(diǎn)C為對(duì)角線AB,OD的交點(diǎn),$\overrightarrow{BM}=\frac{1}{3}\overrightarrow{BC}$,$\overrightarrow{CN}=\frac{1}{3}\overrightarrow{CD}$
(1)試用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OM},\overrightarrow{ON},\overrightarrow{MN}$;
(2)若OA=2,OB=6,MN=1,求平行四邊形OADB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案