分析 由分段函數(shù),可得當x<1時,21-x≤2,當x≥1時,1+log2x≤2,運用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,解不等式即可得到所求范圍.
解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x<1}\\{1+lo{g}_{2}x,x≥1}\end{array}\right.$,
可得當x<1時,f(x)≤2,即為21-x≤2,
即1-x≤1,解得0≤x<1;
當x≥1時,1+log2x≤2,解得1≤x≤2.
綜上可得,x的范圍是[0,2].
故答案為:[0,2].
點評 本題考查分段函數(shù)的運用:解不等式,注意運用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分數(shù)段(分) | [50,70) | [70,90) | [90,110) | [110,130) | [130,150) | 總計 |
頻數(shù) | b | |||||
頻率 | a | 0.25 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2} | B. | {-2,-1} | C. | {-2,-1,0} | D. | {1,2,0} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分必要條件 | B. | 必要不充分條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com