三、解答題(本大題共有3個小題,共40分。解答應寫出文字說明、演算步驟或證明過程。)
13. (本小題滿分13分)
已知命題:方程表示焦點在軸上的橢圓,命題:關于x的方程無實根,若“”為假命題,“”為真命題,求實數(shù)的取值范圍.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
的兩個頂點坐標分別是,頂點A滿足.
(1)求頂點A的軌跡方程;
(2)若點在(1)軌跡上,求的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知焦點為的橢圓經(jīng)過點, 直線過點與橢圓交于兩點, 其中為坐標原點.
(1) 求橢圓的方程;  (2) 求的范圍; 
(3) 若與向量共線, 求的值及的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)
已知橢圓E:的焦點坐標為),點M()在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設Q(1,0),過Q點引直線與橢圓E交于兩點,求線段中點的軌跡方程;
(Ⅲ)O為坐標原點,⊙的任意一條切線與橢圓E有兩個交點,求⊙的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的長軸長、焦距和短軸長成等差數(shù)列,則橢圓的離心率為           (    )
              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,正六邊形的兩個頂點、為橢圓的兩個
焦點,其余4個頂點在橢圓上,則該橢圓的離心率為_______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(設橢圓雙曲線拋物線的離心率分別為,則
A.B.
C.D.關系不確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點F是橢圓的右焦點,點A(4,1)是橢圓內(nèi)的一點,點Px,
y)是橢圓上的一個動點,則的最大值是                    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

的離心率等于__________,與該橢圓有共


 

 
同焦點,且一條漸近線是的雙曲線方程是

___________________.

查看答案和解析>>

同步練習冊答案