17.曲線的參數(shù)方程為$\left\{\begin{array}{l}{x=4{t}^{2}+3}\\{y={t}^{2}-1}\end{array}\right.$(t為參數(shù)),則曲線是( 。
A.線段B.雙曲線的一支C.D.射線

分析 把t2=y+1代入x=4t2+3,化為x-4y-7=0.(x≥3,y≥-1).即可得出.

解答 解:把t2=y+1代入x=4t2+3,可得x=4(y+1)+3,化為x-4y-7=0.(x≥3,y≥-1).
∴參數(shù)方程表示的是一條射線.
故選:D.

點(diǎn)評 本題考查了把參數(shù)方程化為普通方程,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知等比數(shù)列{an}中,a1+a2=1,a3+a4=4,則a5+a6=(  )
A.±16B.16C.32D.±32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,0<x≤16}\\{cos\frac{πx}{6},x>16}\end{array}\right.$,則f(f(-32))=(  )
A.-1B.-1+log2$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{1}{2}$log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知某棱錐的三視圖如圖所示,俯視圖為正方形,根據(jù)圖中所給的數(shù)據(jù),那么該棱錐外接球的體積是( 。
A.$\frac{4}{3}π$B.$\frac{8}{3}π$C.$\frac{{8\sqrt{2}}}{3}π$D.$\frac{{16\sqrt{2}}}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xoy中,已知A(0,0),B(2,0),C(2,2),D(0,2),先將正方形ABCD繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,再將所得圖形的縱坐標(biāo)壓縮為原來的一半,橫坐標(biāo)不變,求連續(xù)兩次變換所對應(yīng)的矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.利用平面區(qū)域求不等式組$\left\{\begin{array}{l}{x≥3}\\{y≥2}\\{6x+7y≤50}\end{array}\right.$的整數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若直線過點(diǎn)P(0,1),它與兩坐標(biāo)軸圍成的三角形的面積為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在區(qū)間[0,3]上任意取一個(gè)數(shù)m,則函數(shù)f(x)=$\frac{1}{3}$x3-x2+mx是R上的單調(diào)函數(shù)的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點(diǎn)A(x1,y1),B(x2,y2)在斜率為k的直線上,若|AB|=a,則|y2-y1|等于( 。
A.|ak|B.a$\sqrt{1+{k}^{2}}$C.$\frac{a}{1+{k}^{2}}$D.$\frac{a|k|}{\sqrt{1+{k}^{2}}}$

查看答案和解析>>

同步練習(xí)冊答案