5.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(1,0),則向量$\overrightarrow{a}$在向量$\overrightarrow$方向上的正射影的數(shù)量為(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\frac{1}{2}$

分析 根據(jù)向量數(shù)量積的關(guān)系進行化簡,結(jié)合向量投影的定義進行求解即可.

解答 解:∵向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(1,0),
∴$\overrightarrow{a}•\overrightarrow$=$\sqrt{3}$,|$\overrightarrow$|=1,
∴向量$\overrightarrow{a}$在向量$\overrightarrow$方向上的正射影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=$\sqrt{3}$,
故選:A

點評 本題主要考查向量數(shù)量積的應(yīng)用,利用向量投影的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)i是虛數(shù)單位,若復(fù)數(shù)a+$\frac{15}{3-4i}$(a∈R)是純虛數(shù),則a的值為$-\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{3}$,則|3$\overrightarrow{a}$-2$\overrightarrow$|的值是$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知全集I={1,2,3,4,5,6},集合A={2,3,5,6},B={1,3},則(∁IA)∩B等于( 。
A.{1,3,4}B.{1,3}C.{1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)$\frac{-i}{1+2i}$ (i是虛數(shù)單位)的虛部是(  )
A.$\frac{1}{3}$B.$\frac{1}{3}$iC.-$\frac{1}{5}$D.-$\frac{1}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=-x3+ax2+bx+c,圖象上的點(1,5)處的切線方程為y=5.
(Ⅰ)若函數(shù)f(x)在x=-1時有極值,求f(x)的表達式;
(Ⅱ)設(shè)函數(shù)f(x)在區(qū)間[2,3]上是增函數(shù),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)的定義域內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.例如:f(x)=x2+x-1在R上存在x=1,滿足f(-1)=-f(1),故稱f(x)=x2+x-1為“局部奇函數(shù)”.設(shè)f(x)=ln(x+2)在其定義域內(nèi)存在x=a,使f(x)=ln(x+2)是“局部奇函數(shù)”,則a=$±\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.明代程大位所著《算法統(tǒng)宗》中記載“遠看巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”這首古詩描述寶塔一共有七層,每層懸掛的紅燈數(shù)是上一層的2倍,總共有燈381盞,為這個塔頂層有幾盞燈?(  )
A.2盞B.3盞C.4盞D.5盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)全集U=R,集合A={x|-4<x<1},B={x|${4}^{x+\frac{1}{2}}$>$\frac{1}{8}$},則圖中陰影部分所表示的集合為(-∞,-4].

查看答案和解析>>

同步練習(xí)冊答案