A. | 關(guān)于點(diǎn)$(\frac{π}{6},0)$對稱 | B. | 關(guān)于x=$\frac{π}{6}$對稱 | C. | 關(guān)于點(diǎn)($\frac{π}{12}$,0)對稱 | D. | 關(guān)于x=$\frac{π}{12}$對稱 |
分析 由條件利用正弦函數(shù)的周期性求得ω,再根據(jù)奇偶性求出φ,可得函數(shù)的解析式;再根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律、正弦函數(shù)的圖象的對稱性,得出結(jié)論.
解答 解:由函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是π,可得$\frac{2π}{ω}$=π,
求得ω=2.
把f(x)的圖象向右平移$\frac{π}{3}$個單位后得到的圖象對應(yīng)函數(shù)為y=sin[2(x-$\frac{π}{3}$)+φ]=sin(2x+φ-$\frac{2π}{3}$),
再根據(jù)得到的函數(shù)為奇函數(shù),可得φ-$\frac{2π}{3}$=kπ,k∈z,即φ=kπ+$\frac{2π}{3}$,故φ=-$\frac{π}{3}$,f(x)=sin(2x-$\frac{π}{3}$).
令x=$\frac{π}{6}$,求得f(x)=0,可得函數(shù)f(x)的圖象關(guān)于點(diǎn)$(\frac{π}{6},0)$對稱,
故選:A.
點(diǎn)評 本題主要考查正弦函數(shù)的周期性、奇偶性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 17πcm2 | B. | 34πcm2 | C. | 68πcm2 | D. | 136πcm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{3}$,3] | B. | [-2,3] | C. | [-$\frac{1}{3}$,3) | D. | $[-\frac{11}{3},3)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sinx | B. | $y=\frac{1}{x}$ | C. | y=lnx | D. | y=ex |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$或$-\frac{1}{12}$ | B. | $-\frac{1}{12}$ | C. | $\frac{1}{4}$ | D. | 4或-12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}π}}{2}$ | B. | π | C. | $2\sqrt{2}π$ | D. | 4π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com