11.已知數(shù)列{an}為等比數(shù)列,且a2013+a2015=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,則a2014(a2012+2a2014+a2016)的值為4π2

分析 ${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,表示半圓:$y=\sqrt{4-{x}^{2}}$(0≤x≤2)的面積,可得${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=2π.再利用等比數(shù)列的性質(zhì)即可得出.

解答 解:∵${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,表示半圓:$y=\sqrt{4-{x}^{2}}$(0≤x≤2)的面積,∴${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=2π.
∴a2013+a2015=2π,
則a2014(a2012+2a2014+a2016)=${a}_{2013}^{2}$+$2{a}_{2014}^{2}$+${a}_{2015}^{2}$=$({a}_{2013}+{a}_{2015})^{2}$=4π2
故答案為:4π2

點(diǎn)評(píng) 本題考查了微積分基本定理、等比數(shù)列的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,AA1B1B是圓柱的軸截面,C是底面圓周上異于A,B的一點(diǎn),AA1=AB=2.
(1)求證:平面AA1C⊥平面BA1C.
(2)求幾何體A1-ABC的體積V的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,⊙O為△ABC的外接圓,且AB=AC,過點(diǎn)A的直線交⊙O于D,交BC的延長線于F,DE是BD的延長線,連接CD.
(1)求證:∠EDF=∠CDF;
(2)求證:AB2=AF•AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是單調(diào)遞增函數(shù),若f(3)=0,則不等式xf(x)<0的解集是( 。
A.(-3,0)∪(3,+∞)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若變量x,y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y+1≥0}\\{3x-y-1≤0}\end{array}\right.$,則z=x-y的最大值為(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知圓的兩條弦AB,CD,延長AB,CD交于圓外一點(diǎn)E,過E作AD的平行線交CB的延長線于F,過點(diǎn)F作圓的切線FG,G為切點(diǎn).求證:
(I)△EFC∽△BFE;
(Ⅱ)FG=FE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}|lgx|,x>0\\-{x^2}-2x,x≤0\end{array}$,則函數(shù)y=2[f(x)]2-3f(x)+1有7個(gè)不同的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p:?x∈(0,+∞),x2≥x-1,則命題p的否定形式是( 。
A.¬p:?x0∈(0,+∞),x02≥x0-1B.¬p:?x0∈(-∞,+0),x02≥x0-1
C.¬p:?x0∈(0,+∞),x02<x0-1D.¬p:?x0∈(-∞,+0),x02<x0-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足$f(3x-1)<f(\frac{1}{3})$的x的取值范圍是($\frac{2}{9}$,$\frac{4}{9}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案