2.如圖所示,⊙O為△ABC的外接圓,且AB=AC,過點A的直線交⊙O于D,交BC的延長線于F,DE是BD的延長線,連接CD.
(1)求證:∠EDF=∠CDF;
(2)求證:AB2=AF•AD.

分析 (1)可根據(jù)切割線定理先得出關(guān)于FD,F(xiàn)A,F(xiàn)C,F(xiàn)B的比例關(guān)系,然后得出三角形FDC和FBA相似,因此可得出∠CDF=∠ABC,∠EDF和∠ADB是對頂角,因此只要證得∠ABC=∠ADB相等即可,AB=AC,∠ABC=∠ACB,而∠ACB和∠ADB又對應(yīng)同一段弧,因此也就相等了,至此便可得出本題的結(jié)論;
(2)關(guān)鍵是證△ABD,△ABF相似,已經(jīng)有一個公共角,根據(jù)(1)中證明的過程我們不難得出∠ABC=∠CDF,得到兩三角形相似后根據(jù)相似三角形的對應(yīng)邊對應(yīng)比例即可得出所求的結(jié)果

解答 證明:(1)根據(jù)切割線定理的推論可知:FD•FA=FC•FB
∵∠F=∠F,
∴△FDC∽△FBA,
∴∠CDF=∠ABC,
∵AB=AC,
∴∠ABC=∠ACB,
∵∠ADB=∠ACB(所對的弧相等)
∴∠ABC=∠ADB=∠EDF,
∴∠EDF=∠CDF;
(2)由(1)知∠ADB=∠ABC.
又∵∠BAD=∠FAB,
∴△ADB∽△ABF,∴$\frac{AB}{AF}$=$\frac{AD}{AB}$,
∴AB2=AF•AD.

點評 本題主要考查了切割線定理,相似三角形的判定和性質(zhì)等知識點,通過切割線定理求出三角形相似從而得出角相等是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$f(x)=\sqrt{1-{{log}_2}(x-1)}$的定義域為( 。
A.(1,3]B.(-∞,3]C.(0,3]D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.汶川地震后需搭建簡易帳篷,搭建如圖①的單頂帳篷需要17根鋼管,這樣的帳篷按圖②、圖③的方式串起來搭建,則串7頂這樣的帳篷需要83根鋼管.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在三棱錐P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,點D,E分別在棱PB,PC上,且DE∥BC.平面ADE∩平面ABC=l.
(1)求證:DE∥l;
(2)求證:DE⊥平面PAC;
(3)若二面角A-DE-P為直二面角,求PE:PC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線l過點P(1,0),且與以$A({2,1}),B({0,\sqrt{3}})$為端點的線段有公共點,則直線 l傾斜角的取值范圍為[$\frac{π}{4}$,$\frac{2π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若一個圓錐的側(cè)面展開圖恰好是一個半圓,則這個圓錐的側(cè)面積與表面積之比為2:3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知定義在R上的函數(shù)f(x)的圖象關(guān)于點(-$\frac{3}{4}$,0)成中心對稱,對任意實數(shù)x都有f(x)=-$\frac{1}{f(x+\frac{3}{2})}$,且f(-1)=1,f(0)=-2,則f(0)+f(1)+…+f(2015)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}為等比數(shù)列,且a2013+a2015=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,則a2014(a2012+2a2014+a2016)的值為4π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知四邊形ABCD中,∠ABC=∠ACB=58°,∠CAD=48°,∠BCD=30°,求∠BAD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案