1.如圖,AA1B1B是圓柱的軸截面,C是底面圓周上異于A,B的一點(diǎn),AA1=AB=2.
(1)求證:平面AA1C⊥平面BA1C.
(2)求幾何體A1-ABC的體積V的最大值.

分析 (1)證明AC⊥BC,推出BC⊥平面AA1C,然后利用平面與平面垂直的判定定理證明即可.
(2)在Rt△ABC中,設(shè)AC=x,表示出BC,求出幾何體的體積的表達(dá)式,利用二次函數(shù)的最值求解即可.

解答 (1)證明:∵C是底面圓周上異于A,B的一點(diǎn),AB是底面圓的直徑,
∴AC⊥BC.(2分)
$\left.\begin{array}{l}A{A_1}⊥底面ABC\\ BC?平面ABC\end{array}\right\}⇒BC⊥A{A_1}$(3分)、
AA1∩AC=A,
$\left.\begin{array}{l}∴BC⊥平面A{A_1}C\\ BC?平面B{A_1}C\end{array}\right\}⇒平面A{A_1}C⊥平面B{A_1}C$(6分)
(2)解:在Rt△ABC中,設(shè)AC=x,
則$BC=\sqrt{A{B^2}-A{C^2}}=\sqrt{4-{x^2}}(0<x<2)$${V_{{A_1}-ABC}}=\frac{1}{3}{S_{△ABC}}•A{A_1}=\frac{1}{3}x\sqrt{4-{x^2}}=\frac{1}{3}\sqrt{{x^2}(4-{x^2})}=\frac{1}{3}\sqrt{-{{({x^2}-2)}^2}+4}$(10分)
當(dāng)x2=2,即$x=\sqrt{2}$時(shí),${V_{{A_1}-ABC}}$的最大值為$\frac{2}{3}$.(12分)

點(diǎn)評(píng) 本題考查平面與平面垂直的判定定理的應(yīng)用,幾何體的體積的求法,二次函數(shù)的性質(zhì),考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知⊙O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是⊙O的直徑.
(1)求證:AC•BC=AD•AE;
(2)過點(diǎn)C作⊙O的切線交BA的延長線于點(diǎn)F,若AF=4,CF=6,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$f(x)=\sqrt{1-{{log}_2}(x-1)}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,3]B.(-∞,3]C.(0,3]D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且∠F1PF2=$\frac{π}{3}$,記橢圓和雙曲線的離心率分別為e1,e2,則$\frac{1}{{e}_{1}{e}_{2}}$的最大值為( 。
A.3B.$\frac{4\sqrt{3}}{3}$C.2D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,PA,PB是圓O的兩條切線,A,B為切點(diǎn),PCN為圓O的割線,M為PN于AB的交點(diǎn).證明:$\frac{AM}{BM}$=$\frac{A{N}^{2}}{B{N}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,求$\frac{BD}{DA}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.汶川地震后需搭建簡易帳篷,搭建如圖①的單頂帳篷需要17根鋼管,這樣的帳篷按圖②、圖③的方式串起來搭建,則串7頂這樣的帳篷需要83根鋼管.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在三棱錐P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,點(diǎn)D,E分別在棱PB,PC上,且DE∥BC.平面ADE∩平面ABC=l.
(1)求證:DE∥l;
(2)求證:DE⊥平面PAC;
(3)若二面角A-DE-P為直二面角,求PE:PC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}為等比數(shù)列,且a2013+a2015=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,則a2014(a2012+2a2014+a2016)的值為4π2

查看答案和解析>>

同步練習(xí)冊(cè)答案