1.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足$f(3x-1)<f(\frac{1}{3})$的x的取值范圍是($\frac{2}{9}$,$\frac{4}{9}$).

分析 利用函數(shù)的奇偶性的性質(zhì)將f(3x-1)<f($\frac{1}{3}$)轉(zhuǎn)化為f(|3x-1|)<f($\frac{1}{3}$)然后利用函數(shù)的單調(diào)性解不等式即可..

解答 解:∵函數(shù)f(x)是偶函數(shù),
∴f(3x-1)<f($\frac{1}{3}$)等價(jià)為f(|3x-1|)<f($\frac{1}{3}$),
∵f(x)在區(qū)間[0,+∞)上單調(diào)遞增,
∴|3x-1|<$\frac{1}{3}$,即-$\frac{1}{3}$<3x-1<$\frac{1}{3}$,解得$\frac{2}{9}$<x<$\frac{4}{9}$,
∴x的取值范圍是($\frac{2}{9}$,$\frac{4}{9}$).
故答案為:($\frac{2}{9}$,$\frac{4}{9}$).

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的應(yīng)用,利用函數(shù)是偶函數(shù)將不等式轉(zhuǎn)化為f(|3x-1|)<f($\frac{1}{3}$)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}為等比數(shù)列,且a2013+a2015=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,則a2014(a2012+2a2014+a2016)的值為4π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知四邊形ABCD中,∠ABC=∠ACB=58°,∠CAD=48°,∠BCD=30°,求∠BAD的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)y=lg(100-x2)的值域是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知四棱錐ABCD-A1B1C1D1的底面是邊長(zhǎng)為2的正方形,側(cè)棱AA1⊥底面ABCD,若得二面角A1-BD-C1的大小為60°,求四棱柱ABCD-A1B1C1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知一個(gè)三棱柱ABC-A′B′C′的三視圖由一個(gè)直角三角形和兩個(gè)矩形組成,如圖若M,N分別是A′C′,BC的中點(diǎn).
(1)求證:MN∥平面ABB′A′;
(2)求直線MN和面BCC′B′所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=2x3+5$\sqrt{2{x^3}-1}$的最小值是( 。
A.-3?B.1C.$-\frac{21}{4}$?D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下面幾種推理過(guò)程是演繹推理的是(  )
A.兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A和∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
B.由平面三角形的性質(zhì),推測(cè)空間四面體的性質(zhì)
C.某校高三共有10個(gè)班,1班有51人,2班有53人,三班有52人,由此推測(cè)各班都超過(guò)50人
D.在數(shù)列{an}中,a1=1,an=$\frac{1}{2}$(an-1+$\frac{1}{{a}_{n-1}}$)(n≥2),計(jì)算a2、a3,a4,由此猜測(cè)通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知二次函數(shù)f(x)滿足f(x+1)-f(x)=4x,且f(0)=1.
(1)求二次函數(shù)f(x)的解析式.
(2)求函數(shù)g(x)=($\frac{1}{2}$)f(x)的單調(diào)增區(qū)間和值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案