20.已知命題p:?x∈(0,+∞),x2≥x-1,則命題p的否定形式是( 。
A.¬p:?x0∈(0,+∞),x02≥x0-1B.¬p:?x0∈(-∞,+0),x02≥x0-1
C.¬p:?x0∈(0,+∞),x02<x0-1D.¬p:?x0∈(-∞,+0),x02<x0-1

分析 利用全稱命題與特稱命題的否定關(guān)系,寫出結(jié)果即可.

解答 解:因為全稱命題的否定是特稱命題,所以命題p:?x∈(0,+∞),x2≥x-1,則命題p的否定形式是:¬p:?x0∈(0,+∞),x02<x0-1.
故選:C.

點評 本題考查全稱命題與特稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在三棱錐P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,點D,E分別在棱PB,PC上,且DE∥BC.平面ADE∩平面ABC=l.
(1)求證:DE∥l;
(2)求證:DE⊥平面PAC;
(3)若二面角A-DE-P為直二面角,求PE:PC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}為等比數(shù)列,且a2013+a2015=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,則a2014(a2012+2a2014+a2016)的值為4π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\overrightarrow{a}$=(cosx,2cosx),$\overrightarrow$=(2cosx,sinx),f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)把f(x)的圖象向右平移$\frac{π}{6}$個單位得g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間; 
(2)當(dāng)$\vec a≠\vec 0,\vec a$與$\vec b$共線時,求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.將拋物線y=x2+2x向上平移1個單位長度,向左平移2個單位長度得到的函數(shù)圖象解析式是y=(x+3)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線y2=4x,過焦點且傾斜角為60°的直線與拋物線交于A、B兩點,則△AOB的面積為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{8\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知四邊形ABCD中,∠ABC=∠ACB=58°,∠CAD=48°,∠BCD=30°,求∠BAD的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)y=lg(100-x2)的值域是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下面幾種推理過程是演繹推理的是( 。
A.兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A和∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
B.由平面三角形的性質(zhì),推測空間四面體的性質(zhì)
C.某校高三共有10個班,1班有51人,2班有53人,三班有52人,由此推測各班都超過50人
D.在數(shù)列{an}中,a1=1,an=$\frac{1}{2}$(an-1+$\frac{1}{{a}_{n-1}}$)(n≥2),計算a2、a3,a4,由此猜測通項an

查看答案和解析>>

同步練習(xí)冊答案