18.已知集合A={x|$\frac{6}{x+1}$≥1},B={x|x2>1},則集合M={x|x∈A且x∉B}=( 。
A.(-1,1]B.[-1,1]C.(1,5]D.[1,5]

分析 求出A與B中不等式的解集確定出A與B,找出B補(bǔ)集與A的交集即可.

解答 解:由A中不等式變形得:(x-5)(x+1)<0,
解得:-1<x<5,
即A=(-1,5),
由B中不等式解得:x>1或x<-1,
即B=(-∞,-1)∪(1,+∞),
∴∁UB=[-1,1],
∵集合M={x|x∈A且x∉B},
∴M=(∁UB)∩A=(-1,1].
故選:A.

點(diǎn)評(píng) 本題考查集合的交、并、補(bǔ)集的混合運(yùn)算,解題時(shí)要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x-ln(x+a)的最小值為0,其中a>0.
(Ⅰ)求a的值;
(Ⅱ)已知結(jié)論:若函數(shù)f(x)=x-ln(x+a)在區(qū)間(m,n)內(nèi)導(dǎo)數(shù)都存在,且m>-a,則存在x0∈(m,n),使得$f'({x_0})=\frac{f(n)-f(m)}{n-m}$.試用這個(gè)結(jié)論證明:若-a<x1<x2,設(shè)函數(shù)$g(x)=\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}(x-{x_1})+f({x_1})$,則對(duì)任意x∈(x1,x2),都有f(x)<g(x);
(Ⅲ)若et+n≥1+n對(duì)任意的正整數(shù)n都成立(其中e為自然對(duì)數(shù)的底),求實(shí)數(shù)t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若$\frac{1}{27}$≤x≤9,則f(x)=log3$\frac{x}{27}$•log3(3x)( 。
A.有最小值-$\frac{32}{9}$,最大值-3B.有最小-4,最大值12
C.有最小值-$\frac{32}{9}$,無(wú)最大值D.無(wú)最小值,有最大值12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知向量$\overrightarrow a=(cosθ,sinθ)$,向量$\overrightarrow b=(\sqrt{3},-1)$,則|2$\overrightarrow a-\overrightarrow b|$的最大值,最小值分別是(  )
A.4,0B.$4\sqrt{2}$,4C.$4\sqrt{2}$,0D.16,0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知MOD函數(shù)是一個(gè)求余函數(shù),其格式為MOD(n,m),其結(jié)果為n除以m的余數(shù),例如MOD(8,3)=2.下面是一個(gè)算法的程序框圖,當(dāng)輸入的值為36時(shí),則輸出的結(jié)果為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=$\left\{\begin{array}{l}{1,x為有理數(shù)}\\{0,x為無(wú)理數(shù)}\end{array}\right.$被稱為狄利克雷函數(shù),則關(guān)于函數(shù)f(x)有以下四個(gè)命題:
①f(f(x))=0;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對(duì)任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的個(gè)數(shù)是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.四棱錐P-ABCD的底面為正方形,邊長(zhǎng)為a,且PD=a,PA=PC=$\sqrt{2}$a,在這個(gè)四棱錐中放入一個(gè)球,則球的最大半徑為$\frac{2-\sqrt{2}}{2}$a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=x•2|x|-x-2的零點(diǎn)個(gè)數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.二項(xiàng)式($\sqrt{x}$-$\frac{1}{\sqrt{x}}$)8的展開(kāi)式中常數(shù)項(xiàng)等于70.

查看答案和解析>>

同步練習(xí)冊(cè)答案