2.${(\frac{{\sqrt{x}}}{3}-\frac{3}{x})^9}$的展開(kāi)式中常數(shù)項(xiàng)等于-$\frac{28}{9}$.

分析 先求出二項(xiàng)式展開(kāi)式的通項(xiàng)公式,再令x的冪指數(shù)等于0,求得r的值,即可求得展開(kāi)式中的常數(shù)項(xiàng)的值.

解答 解:${(\frac{{\sqrt{x}}}{3}-\frac{3}{x})^9}$的展開(kāi)式的通項(xiàng)公式為T(mén)r+1=${C}_{9}^{r}$•${(\frac{1}{3})}^{9-r}$•(-3)r•${x}^{\frac{9-3r}{2}}$,
令$\frac{9-3r}{2}$=0,求得r=3,可得展開(kāi)式中常數(shù)項(xiàng)等于${C}_{9}^{3}$•${(\frac{1}{3})}^{6}$•(-3)3=-$\frac{28}{9}$,
故答案為:-$\frac{28}{9}$.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知 ${(\sqrt{x}+\frac{a}{{\sqrt{x}}})^6}$的展開(kāi)式中含 x2項(xiàng)的系數(shù)為12,則展開(kāi)式的常數(shù)項(xiàng)為160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知x,y滿足$\left\{\begin{array}{l}x+2y≤3\\ 2x+y≤3\\ x≥0\\ y≥0\end{array}\right.$,則x+y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{{t•{3^x}-1}}{{{3^x}+1}}({t∈R})$是奇函數(shù).
(1)求t的值;
(2)求f(x)的反函數(shù)f-1(x);
(3)對(duì)于任意的m>0,解不等式:f-1(x)>log3$\frac{1+x}{m}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.證明二項(xiàng)式定理(a+b)n=$\sum_{r=0}^{n}$C${\;}_{n}^{r}$an-rbr,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1和x=-1處分別取得最大值和最小值,且對(duì)于?x1,x2∈[-1,1](x1≠x2)都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,則函數(shù)f(x+1)一定是( 。
A.周期為2的偶函數(shù)B.周期為2的奇函數(shù)C.周期為4的奇函數(shù)D.周期為4的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.判斷下列各命題是否成立,并簡(jiǎn)述理由:
(1)若a>b,則ac<bc;
(2)若ac2<bc2,則a>b;
(3)若a>b,則2-xa>2-xb;
(4)若a>b,$\frac{1}{a}$>$\frac{1}$,則a>0,b<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知在△ABC中,若sinA:sinB:sinC=2:3:4,則cosB=( 。
A.$\frac{11}{16}$B.-$\frac{11}{16}$C.$\frac{3}{16}$D.-$\frac{3}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=x3+ax2-a2x+2
(1)當(dāng)a=1,求曲線y=f(x)在點(diǎn)(1,f(1)處的切線方程
(2)當(dāng)a≠0,求函數(shù)f(x)的單調(diào)區(qū)間
(3)不等式2x1nx≤f′(x)+a2+1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案