10.設(shè)|x|≠1,求證:$\frac{x}{1-{x}^{2}}$+$\frac{{x}^{2}}{1-{x}^{4}}$+$\frac{{x}^{4}}{1-{x}^{8}}$+…+$\frac{{x}^{{2}^{n-1}}}{1-{x}^{2n}}$=$\frac{1}{1-x}$•$\frac{x-{x}^{{2}^{n}}}{1-{x}^{{2}^{n}}}$(其中n∈N*

分析 通過$\frac{x}{1-x}$利用分式同乘1+x,拆項(xiàng)得到$\frac{x}{1-{x}^{2}}$+$\frac{{x}^{2}}{1-{x}^{2}}$,把后一項(xiàng),利用相同的方法處理,類推,然后移項(xiàng)整理即可.

解答 證明:∵$\frac{x}{1-x}$=$\frac{x(1+x)}{1-{x}^{2}}=\frac{x+{x}^{2}}{1-{x}^{2}}$=$\frac{x}{1-{x}^{2}}$+$\frac{{x}^{2}}{1-{x}^{2}}$=$\frac{x}{1-{x}^{2}}$+$\frac{{x}^{2}(1+{x}^{2})}{1-{x}^{4}}$=$\frac{x}{1-{x}^{2}}$+$\frac{{x}^{2}}{1-{x}^{4}}$+$\frac{{x}^{4}}{1-{x}^{4}}$=…
=$\frac{x}{1-{x}^{2}}$+$\frac{{x}^{2}}{1-{x}^{4}}$+$\frac{{x}^{4}}{1-{x}^{8}}$+…+$\frac{{x}^{{2}^{n-1}}}{1-{x}^{2n}}$+$\frac{{x}^{{2}^{n}}}{1-{x}^{2n}}$,
∴$\frac{x}{1-{x}^{2}}$+$\frac{{x}^{2}}{1-{x}^{4}}$+$\frac{{x}^{4}}{1-{x}^{8}}$+…+$\frac{{x}^{{2}^{n-1}}}{1-{x}^{2n}}$=$\frac{x}{1-x}$-$\frac{{x}^{2n}}{1-{x}^{2n}}$=$\frac{x-{x}^{2n}}{(1-x)(1-{x}^{2n})}$=$\frac{1}{1-x}$•$\frac{x-{x}^{2n}}{1-{x}^{2n}}$.
∴等式成立.

點(diǎn)評(píng) 本題考查綜合法證明等式成立的方法,也可以利用數(shù)學(xué)歸納法證明,注意本題的解題策略.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知m、n為正整數(shù),a>0且a≠1,且logam+loga(1+$\frac{1}{m}$)+loga(1+$\frac{1}{m+1}$)+…+loga(1+$\frac{1}{m+n-1}$)=logam+logan,求$\frac{m}{n}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四邊形ABCD為菱形,MA⊥平面ABCD,四邊形ADNM是平行四邊形.
(Ⅰ)求證:MB∥平面CDN;
(Ⅱ)求證:平面AMC⊥平面BDN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)到一條漸近線的距離等于焦距的$\frac{1}{4}$,則該雙曲線的漸近線方程是( 。
A.x±2y=0B.2x±y=0C.$\sqrt{3}$x±y=0D.x$±\sqrt{3}$y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若ax2-5x+b>0解集為{x|-3<x<2},則bx2-5x+a>0解集為( 。
A.{x|x<-$\frac{1}{3}$或x>$\frac{1}{2}$}B.{x|-3<x<2}C.{x|-$\frac{1}{3}$<x<$\frac{1}{2}$}D.{x|x<-3或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在直三棱柱ABC-A1B1C1中,點(diǎn)D是AB的中點(diǎn),BC=CC1=4,AB=10,CD=3.
(Ⅰ)求證:AC1∥面CDB1;
(Ⅱ)求證:C1B⊥面CDB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若定義在R上的函數(shù)f(x)滿足f(x)=$\frac{f′(1)}{2}$•e2x-2+x2-2f(0)•x,g(x)=f($\frac{x}{2}$)-$\frac{1}{4}$x2+(1-a)x+a.
(Ⅰ)求函數(shù)f(x)解析式;
(Ⅱ)求函數(shù)g(x)單調(diào)區(qū)間;
(Ⅲ)試比較|$\frac{e}{x}$-lnx|+lnx和ex-1+a的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求雙曲線9x2-16y2=144的標(biāo)準(zhǔn)方程以及焦點(diǎn)、離心率、準(zhǔn)線和漸近線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ex-mx-n(m,n∈R).
(Ⅰ)若函數(shù)f(x)在x=0處的切線過點(diǎn)(1,0),求m+n的值;
(Ⅱ)當(dāng)n=0時(shí),討論函數(shù)f(x)在區(qū)間[-1,+∞)的單調(diào)性,并求最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案